
 

128 

Empirical Null Distribution of -2log(lambda) 
 

Bushra Shamshad 
Department of Statistics, University of Karachi 

Main University Rd, Karachi, Karachi City, Sindh 75270, Pakistan 
Phone: +92 21 99261300 

bshamshad@uok.edu.pk 
 

Junaid Saghir Siddiqi 
Department of Statistics, University of Karachi 

Main University Rd, Karachi, Karachi City, Sindh 75270, Pakistan 
Phone: +92 21 99261300 

jssdr123@yahoo.com 
 

Abstract 
Approximation of Non-central Chi-square distribution as an empirical distribution of log-

likelihood ratio test statistics (-2logλ; abbreviated as LRT) has been a concern in the field of 
structural equation modeling. Under extremely severe misspecification (Chun & Shapiro, 2009) 
reported that non-central Chi-square is not a good choice. In this paper, we have used a bootstrap 
sampling procedure to investigate the empirical null distribution of LRT specifically in the context 
of a latent class model (LCM) via frequentist framework (that is, EM algorithm). We used two 
types of data sets. The first type includes those sets of data on which LCM had been carried out 
(published results; named as “training data”). The other type is that of those data sets which are not 
published earlier (i.e. “real” collected data; named as “test data”). Non-central χ2 distribution with 
degrees of freedom equals to the expected value of bootstrap LRT and non-centrality parameter 
equals to inverse of the variance of bootstrapped LRT is found to be very well fitted empirical null 
distribution of LRT in case of LCM. These results will help in obtaining the significance value of 
LRT for deciding on the number of classes present in a latent variable. 

 
Keywords: Latent Class Model, Likelihood Ratio Test Statistics, Bootstrapping, Em-
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1. Introduction 
Likelihood ratio is defined as the ratio of the likelihood of one model (stated in the null 

hypothesis) over the other (the alternative hypothesis). It is a statistical test and used to compare the 
fit of one model over the other, where one of the two models is nested in the other. When all 
regularity conditions are satisfied, -2logλ follows Chi-square distribution and can be used for testing 
the significance of the fitted model. In the context of latent class analysis and mixture distributions, 
it has been known for years that the regularity condition of -2logλ does not hold, that is, the model 
parameters under the null hypothesis lie on the boundary of parameter space (Aitkin., Anderson & 
Hinde 1981). In other words, it is not possible to carry out the test of likelihood ratio (LR) as two 
models (under the null and alternative hypothesis) that have a different number of parameters, where 
one model is nested under the other. A subset of the parameters stated under the null hypothesis is 
set to zero in order to compare it with the other model stated in the alternative hypothesis. 
Therefore, it fails to follow the asymptotic chi-square distribution and the distribution is undefined 
for the likelihood ratio test.  

(Wilks, 1935; 1938) showed that for large samples, the distribution of log-likelihood ratio 
test (-2logλ) for nested models will be asymptotically χ2 with degrees of freedom equal to the 
difference between the dimensions of the sets of parameters involve in the test statistics (where one 
(stated in the null hypothesis), among the two compare model, is the special case of the other (stated 
in an alternative model)). There are a number of studies done for finding whether chi-square can be 
used as an approximated distribution of -2logλ  using simulation techniques. It was then suggested 
that the distribution of -2logλ  can be approximated as chi-square with degrees of freedom equal to 
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twice the number of manifest items in the model (Wolfe, 1970). Further study (Hartigan, 1977) 
conducted also showed that the distribution can be approximated by chi-square with degrees of 
freedom p and p+1, where p is the number of manifest items. 

The problem in using the LR test was discussed by (Aitkin & Wilson, 1980) reporting that in 
small samples the test might not follow the asymptotic distribution of likelihood ratio. Furthermore, 
(Aitkin et al., 1981) and (McLachlan, 1987) showed reservation regarding approximation adequacy 
for the null distribution of -2logλ  to be chi-square since regularity condition does not hold. The use 
of prior distribution for the vector of mixing proportion was showed by (Aitkin & Rubin, 1985). A 
note written by (Quinn, McLachlan & Hjort, 1987) which showed that for the approach used by 
(Aitkin & Rubin, 1985) too the regularity conditions do not hold and therefore the standard 
asymptotic result cannot be applied.  

Several studies conducted for assessing the null distribution of -2logλ by various researchers. 
As mentioned earlier that through the usual testing procedure, it is considered to be asymptotic chi-
square with degrees of freedom equal to the difference between the number of parameters under the 
null and alternative model. Studies conducted in this respect show reservations, since the regularity 
condition do not hold for -2logλ with a mixture and latent class model and so the chances for fitting 
asymptotic χ2 as a null distribution of -2logλ are small. (Aitkin, et al., 1981) mentioned the 
suggestions made by (Wolfe, 1970) and (Hartigan, 1977) that -2logλ could be approximated 
by 𝜒ଶ௞

ଶ  on the basis of small simulation and that it should be between 𝜒௞
ଶ and 𝜒௞ାଵ

ଶ   respectively.  
They assessed the null distribution of -2logλ by simulating its two sets (19 points each), from a 
single population, in which 38 items (of teaching style data) were independent and the response 
probabilities are estimated from the real data, to test the hypothesis of a homogenous population at 
5% level of significance. Both the sets of values were rejected. The first 19 values were simulated 
under the null hypothesis of a no-class model against an alternative hypothesis of a two-class model 
and the other set of values generated under a two-class model against the alternative hypothesis of a 
3-class model. Both the sets were also considered as a single sample but none of the results 
(individual and/or pooled) showed the likelihood of fitting of asymptotic distribution of χ2. Thus, we 
need alternative method(s) for testing the hypothesis on model parameters. 

 
2. The Empirical Null Distribution of LRT (-2logλ) 
Simulation studies are done in the context of a mixture modeling to approximate the 

theoretical null distribution of LRT, which include studies/researches by (Titterington et al., 1985) 
(McLachlan, 1987) (McLachlan & Basford, 1988) and others (for details see McLachlan & Peel, 
2000).  

 
3. Bootstrap Likelihood Ratio Test (BLRT) statistic  
BLRT was first introduced by (McLachlan, 1987) in his paper for the assessment of the p-

value of the likelihood ratio test statistic for the number of component in a normal mixture taking 
the simplest situation for a specified value of gଵ, of a no-class model H୭: g = gଵ against a two-class 
model Hଵ: g = gଶ. This method starts, under the null hypothesis, a bootstrap sample from the 
mixture model, where φෝ being the vector of the likelihood parameter of φ estimated through its 
MLE from the original data. The value of -2logλ  is obtained for each bootstrap sample after fitting 
the mixture model for g = gଵand gଶ in turn to it. The process is repeated independently M number 
of times, and the replicated values of -2logλ evaluated from successive bootstrap samples provide an 
assessment of the bootstrap, and hence of the true, null distribution of -2logλ (McLachlan and Peel, 
2000). A test developed by (Lo, Mendell & Rubin, 2001) using the proposed theorem by (Voung, 
1989) that under the null hypothesis that the random sample is drawn from gଵ − component normal 
mixture distribution versus the alternative that it is drawn from gଶ − component normal mixture, 
where gଵ <  gଶ. The likelihood ratio statistic based on Kullback-Leibler information criteria is 
asymptotically distributed as a weighted sum of independent χଶ with 1 degree of freedom. Through 
simulation results, LMR test evaluates the improvement in the fitting of the two successive models 



BRAIN – Broad Research in Artificial Intelligence and Neuroscience 
Volume 10, Issue 2 (April, 2019), ISSN 2067-3957  
 

 130

and provide significance value to see if there is any improvement in the fit for the higher component 
model.   

The inconsistency in the mathematical proof of Lo-Mendell-Rubin test for normal outcome 
was pointed by (Jeffries, 2003). Despite such critic, many researchers are using LMR test 
empirically for determining the number of mixtures/ classes. “MPlus" software provides LMR p-
value in fitting different models. Also a package named “MplusAutomation_0.5” (Hallquist, 2008)) 
in R software is available which provides programming for model fitting and calculations for 
significance values of related fit statistics and extractions of model parameters. The program is 
developed by Muthen and Muthen (www.statmodel.com). 

(Nylund et al., 2007) uses the method proposed earlier of bootstrap likelihood ratio statistic 
for LCM and calculated the p-value obtained through BLRT estimates of the log likelihood 
difference distribution which indicates if a t-1-class model is rejected in favor of the t-class model. 
(Nylund et al., 2007), while comparing the performance of BLRT with LMR and a Naïve chi-square 
test she also examine the performance of information criteria’s (which include AIC, BIC, CAIC and 
ABIC) for the LCM, factor mixture model and growth mixture model. The method involves 
estimating t-1 and t class models for the log-likelihood ratio statistic, which considered as initial 
estimates. On the basis of the simulation results BIC was marked as the best indicator among other 
information criterions and the bootstrap likelihood ratio test (BLRT) came up to be a very consistent 
indicator for determining the number of classes in three types of mixture modeling, namely, LCM, 
factor mixture modeling and growth mixture modeling. They considered both discrete and 
continuous LCM and use normal distribution to calculate the significance value of LRT regarding 
the number of component/ classes in the model. Furthermore, they used Bayesian approach and 
MCMC simulation technique for the assessment of the significance value of LRT. (Chun & Shapiro, 
2009) assess the remarks made by (Nylund et al., 2007) regarding normal approximation. They 
reported that non-central χ2 can be approximated for the LRT statistics under reasonable 
misspecification. According to their research, the findings may vary for different models. The power 
computation of the test for LRT was done by (Gudicha, Schmittmann, & Vermunt, 2016), using two 
different methods, to estimate the non-centrality parameter of non-central χ2 distribution. We have 
used the method in frequentist framework (i.e. method proposed by Bartholomew in 1987 to find the 
solution of unknown parameters for LCM through EM-algorithm). Thus, there is a room for 
investigation of the asymptotic distribution of -2logλ purely in the context of LCM for categorical 
data.  

 
4. Our Approach for BLRT  
To establish its empirical distribution we have used an approach proposed by (McLachlan, 

1987) for a mixture of two multivariate normal. (Nylund et al., 2007) uses the same method 
proposed earlier for bootstrap likelihood ratio statistic. They used normal distribution to calculate 
the significance value. Although, they mentioned that it does not always fits.  

The approach we are using, to find and establish the empirical distribution of likelihood 
ratio test statistic, is by using confirmatory LCM, which then further used for exploratory models. 
Initially, the hypothesis under consideration about log-likelihood ratio statistic (LRTt-1,t ) under the 
null hypothesis is of “t-1”- class model against the alternative hypothesis of “t”- class model. 
Bootstrap samples are based on fitting of the LCM (via EM algorithm) while using a set of 
parameters stated under the null hypothesis. For each bootstrap sample, LCM is estimated for “t-1” 
and “t” class model to compute the value of -2logλ. The complete procedure for bootstrap sampling 
and storage of LRT୲ିଵ.୲ is presented below. 

1. Estimate the model for t-1 and t-class model and calculate the initial estimates of the log-
likelihood ratio statistic (LRTt-1,t)initial beforehand, which will be used for calculating the 
significance value of LRTt-1,t . 
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2. Assume a hypothetical population based on the parameters of (𝑡 − 1)-latent class model 
stated in the null hypothesis. From the assumed hypothetical population, generate bootstrap 
sample and estimate (t-1) and (t)-latent class models to calculate LRTt-1,t .  

3. Repeat step 2, say “B” times independently to compute LRTt-1,t at each replication.  
4. The resultant vector of LRTt-1,t obtained is then used to evaluate the empirical distribution 

through goodness of fit test.   
 
The process is repeated independently “100” times. it should be noted that the estimation 

procedure used is same for both bootstrap samples and for the model fitted beforehand for 
obtaining parameter (McLachlan, 1987) (McLachlan & Krishnan, 2008). 

In the following sub sections, we will be investigating the null distribution of LRT through 
the bootstrap sampling technique on training and test data sets. The hypothetical population 
considered here is from (t-1)-class model. For the simulation of hypothetical population, LCM is 
fitted on the concerned data and the estimates thus obtained are treated as parameters. The (t-1) and 
t-class models are fitted on the sample drawn from the hypothetical population. LRTt-1,t is then 
calculated using maximum likelihood estimates for (t-1) and t-class models from each booted 
sample. The process is repeated multiple number of times (say B-time) and LRTt-1,t of size B, is 
then assessed for the empirical distribution of -2logλ. It is then investigated that the empirical 
distribution of -2logλ found out to be a non-central χ2 distribution with degrees of freedom equal to 
the expected mean of LRTt-1,t and non-centrality parameter (ncp) equals to the inverse of the 
expected variance of LRTt-1,t. The chi-square goodness of fit test shows that the non-central 𝜒ଶ 
distribution (with df = E(LRTt-1,t,) ncp = (V(LRTt-1,t

 )-1) is very well fitted to the data, for each 
situation and for each data considered. 

In the next sections we present the procedure for each training data, i.e., Mastery, role 
conflict, and Karachi University Teachers Society (KUTS) panel data. Goodness of fit test and its 
graphical representation for a single case of size (B = ) 100 is presented for bootstrap LRT1,2, LRT2,3 

for both Mastery and Role Conflict data and LRT1,2, LRT2,3 & LRT3, 4 for KUTS panel data (since a 
3-class model is best fitted on KUTS data).   

 
5. Mastery Data 
(Macready & Dayton, 1977) data known as “Mastery data” was also used by (Bartholomew, 

1987) for applying latent class model. The data is about a test based on 4 dichotomous items constructed 
on solving problem of multiplications. The procedure for BLRT is applied to mastery data in two 
situations 1) 1 vs. 2-class model and 2) 2 vs. 3-class model. As, it is known that a mastery data 
decomposed into two classes of a single latent variable named as “Master” and “Non Master” class 
(Macready and Dayton, 1977) (Bartholomew, 1987). Although the procedure is repeated “100” times, 
we are presenting one simulation result of the goodness of fit test for situation 1 and 2. 

It can be seen from the Table 1 (see also Figure 1), that in both situations the non-central  
distribution (with df = E(BLRTt-1,t), ncp = V(BLRTt-1,t)

-1) is a good fit to the null distribution of 
LRT, that is, p-value for goodness of fit for LRT1,2  is 0.46701 with 3 df ( = no. of classes–2–1;  
as 2 parameters are estimated). Whereas, for LRT2,3, the p-value equal to 0.36136 with 3 df, also 
indicate very well fitting of non-central χ2 distribution. 

 

Table 1. Mastery data; expected frequencies obtained through the fitting of non-central χ2 

distribution for size “B = 100”. Observed frequencies from the bootstrapped sample of; (a) LRT1,2  (b) LRT2,3 
 

LRT1,2 Observed frequency Empirical frequency 
(0.548,2.56] 18 16.99109 
(2.56,4.56] 28 27.755298 
(4.56,6.57] 27 23.037882 
(6.57,8.58] 10 14.861048 
(8.58,10.6] 9 8.40641 
(10.6,12.6] 3 4.38686 
(12.6,14.6] 2 2.167725 
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(14.6,36] 3 1.884808 
Total 100 99.491121 
𝛘𝟐(goodness of fit) 2.546142 
Degrees of freedom (df) 3 
p-value 0.46701 

(a) 
 

LRT2,3 observed frequency Empirical  frequency 
(0,1.67] 28 28.393741 
(1.67,3.39] 32 30.546773 
(3.39,5.11] 20 19.279113 
(5.11,6.83] 8 10.702626 
(6.83,8.55] 9 5.591767 
(8.55,10.3] 1 2.819109 
(10.3,12] 1 1.38809 
(12,33.2] 1 1.278692 
Total 100 99.999911 
𝛘𝟐(goodness of fit) 3.203071 
Degrees of freedom (df) 3 
p-value 0.361363 

(b) 
 

 
(a) 

 
(b) 

 
Figure 1. Mastery data (for B = 100); along with a superimposed non-central 𝜒ଶdistribution curve: (a) 

Histogram for 𝐵𝐿𝑅𝑇ଵ,ଶ; (b) Histogram for 𝐵𝐿𝑅𝑇ଶ,ଷ. 
 

6. Role Conflict Data 
Role conflict data is taken from (Coleman, 1964). (Goodman, 1974a; 1974b) used this data 

to explain a restricted LCM, which further discussed by (Bartholomew, 1987). The data is a panel 
data collected at two different points in time. Two questions were asked each time from individuals. 
Each question was responded as either ‘positive’ or ‘negative’. A restricted model with an 
assumption that there exist two latent variables, and that they altogether form four latent classes is 
the solution for the data. The empirical distribution of BLRT (B = 100) is presented in the Table 2 
for (a) Situation 1 (H0: 1-class model Vs. H1: 2-class model) and (b) Situation 2 (H0: 2-class model 
Vs. H1: 3-class model), along with the expected frequencies and goodness of fit test.  

In each case, Chi-square test indicates the goodness of fit for the non-central χ2 (with df = 
E(LRTt-1,t), ncp = V(LRTt-1,t)

-1) to the empirical null distribution of BLRT. That is, p-value for 
𝜒ଶgoodness of fit in the first situation is 0.276083 with 2 df. Whereas, in the second situation the p-
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value equal to 0.058646 with 3 df also indicate very well fitting of non-central χ2 distribution. The 
goodness of fit can also be seen in Figure 2 for both  LRT1,2  and LRT2,3. 
 
Table 2. Role conflict data; Expected frequencies obtained through the fitting of non-central χ2 distribution 

for size “B = 100”. Observed frequencies from the bootstrapped sample of (a) LRT1,2 ; (b)  LRT2,3. 
 

LRT1,2 Observed Frequency Empirical  Frequency 
(0.45,2.8] 15 20.31083 
(2.8,5.15] 35 31.96709 
(5.15,7.49] 27 23.35075 
(7.49,9.84] 15 12.99846 
(9.84,12.2] 4 6.299644 
(12.2,14.5] 3 2.806942 
(14.5,16.9] 0 1.182026 
(16.9,38.5] 1 0.779773 
Total 100 99.6955 
 χ2(goodness of fit) 3.867928 
Degrees of freedom (df) 2 
p-value 0.276083 

(a) 
 

LRT1,2 Observed Frequency Empirical  Frequency 
(0.298,1.91] 23 20.37098 
(1.91,3.53] 23 26.60688 
(3.53,5.14] 19 20.69197 
(5.14,6.75] 21 13.54058 
(6.75,8.37] 9 8.11963 
(8.37,9.98] 2 4.617904 
(9.98,11.6] 2 2.534554 
(11.6,32.7] 1 2.812054 
Total 100 99.29455 
 χ2(goodness of fit) 7.458069 
Degrees of freedom (df) 3 
p-value 0.058646 

(b) 
 

 
(a) 

 
(b) 

Figure 2. Role Conflict data (for B = 100); Histogram along with superimposed non-central  χ2 curve for 
(a) BLRT1,2; (b)BLRT2,3. 
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7. KUTS Panel Data 
KUTS panel data is the original results of the election held in 1993-94 of teachers of the 

University of Karachi. Two groups (panels) were contesting we named them as “Rightist” and 
“Mix” based on their manifesto. The data was first used by (Shamshad & Siddiqi, 2012) to fit LCM 
and found that a 3-class model is best among other class models. As described earlier the strategy 
for Mastery and Role conflict data we have assessed the empirical distribution of BLRT for KUTS 
panel data in three situations. (a) Situation 1; (H0: 1-class model Vs. H1: 2-class model) and (b) 
Situation 2; (H0: 2-class model Vs. H1: 3-class model) (c) Situation 3; (H0: 3-class model Vs. H1: 4-
class model.  

Non-central  χ2distribution when fitted to BLRT in each situation gives test value (chi-
square goodness of fit) very small (< 2), which is an indication of high p-value, that is, for test 
values 1.98, 0.1565 and 1.173 the p-values are 0.371, 0.924 and 0.882 for BLRT1,2 , BLRT2,3 and 
BLRT3,4 respectively (see Table 3; Figure 3).  
 

Table 3. KUTS panel data; Observed and expected frequencies (obtained through fitting non-central χ2 
distribution) for size “B = 100”; Bootstrapped sample of (a) LRT1,2 (b) LRT2,3 (c) LRT3,4 

LRT1,2 Observed Frequency Expected frequency 

(0,2.37] 21 21.5922 

(2.37,4.8] 37 35.4063 

(4.8,7.22] 19 23.1141 

(7.22,9.65] 12 11.5248 

(9.65,12.1] 8 5.05212 

(12.1,14.5] 2 2.05339 

(14.5,16.9] 0 0.79404 

(16.9,38.6] 1 0.46302 

Total 100 99.99994 

 χ2(goodness of fit) 1.980392 

Degrees of freedom (df) 2 

p-value 0.371504 

(a) 
 

LRT2,3 Observed Frequency Expected Frequency 
(0,2.17] 23 22.83642 
(2.17,4.4] 34 34.10453 
(4.4,6.62] 23 22.26926 
(6.62,8.84] 12 11.5264 
(8.84,11.1] 5 5.340879 
(11.1,13.3] 2 2.319014 
(13.3,15.5] 0 0.964693 
(15.5,37] 1 0.638765 
Total 100 99.99995 
 χ2(goodness of fit) 0.156566 
Degrees of freedom (df) 2 
p-value 0.924703 

(b) 
 

LRT3,4 Observed Frequency Expected Frequency 
(0,1.06] 21 21.84624 
(1.06,2.16] 24 24.17677 
(2.16,3.27] 18 18.18279 
(3.27,4.38] 16 12.58786 
(4.38,5.49] 7 8.380645 
(5.49,6.59] 6 5.45261 
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(6.59,7.7] 3 3.493749 
(7.7,18.5] 5 5.828512 
Total 100 99.94918 
 χ2(goodness of fit) 1.173873 
Degrees of freedom (df) 4 
p-value 0.882381 

(c) 
 

(a) (b) (c) 
 

Figure 3. KUTS panel data (B=100); Histogram and a superimposed curve of non-central χ2distribution of 
bootstrapped (a)  LRT1,2 ; (b) LRT2,3; (c)  LRT3,4. 

 
Table 4. Percent Acceptance Rate of Non- Central χ2 Distribution with df = E(BLRTt-1,t), ncp = V(BLRTt-1,t)

-1 

    level of 
significance 

100 200 500 

Mastery data LRT(1 vs. 2-class model)  5% 86.73% 87.88% 88.89% 
1% 95.92% 93.94% 91.92% 

LRT(2 vs. 3-class model) " 5% 80.81% 80.00% 55.00% 
1% 96.97% 90.00% 67.00% 

role conflict data LRT(1 vs. 2-class model) " 5% 85.86% 85.00% 85.98% 
1% 90.91% 94.00% 94.39% 

LRT(2 vs. 3-class model) " 5% 86.00% 81.08% 74.26% 
1% 95.00% 91.22% 87.13% 

KUTS panel data LRT(1 vs. 2-class model) " 5% 78.57% 81.82% 27.27% 
1% 88.78% 93.94% 43.43% 

LRT(2 vs. 3-class model) " 5% 82.83% 78.79% 60.61% 
1% 93.94% 92.93% 78.79% 

LRT(3 vs. 4-class model) " 5% 82.65% 62.63% 42.98% 
1% 96.94% 78.79% 55.26% 

 
For sizes (i.e. B = 100, 200 and 500) approximately 100 repetitions are done to validate the 

fitting of non-central χ2 distribution on the empirical null distribution of -2logλ for Mastery, Role 
Conflict and KUTS panel data. The summary presented in Table 4, show the percent acceptance 
rate of non-central  χ2 distribution at 5% and 1% level of significance. It can be concluded that the 
null distribution of BLRT is non-central χ2, when modeling is done using LCM. For B = 500, the 
percentage rate of acceptance is quite low, which can be improved by reevaluating the frequency 
distribution of BLRT, as we have used the same codes for the construction of frequency 
distribution of BLRT as used for size 100. Since, for larger samples the distribution of BLRT is 
highly skewed and need appropriate class intervals for the construction of frequency distribution of 
BLRT. Thus, once again the provision of accepting the decision, regarding the number of classes in 
the model, through calculating the significance value of BLRT, using the non-central χ2 distribution 
(with df = E(LRTt-1,t), ncp = V(LRTt-1,t)

-1) is very strong.  
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8. Test Data Sets: Description of General Health Parameter (GHP) Data 
GHP data set is collected through a survey of a long questionnaire (more than 76 questions) 

from more than 1500 students studied at different government and private sector Universities and 
Colleges in Karachi, Pakistan during years 2008-2010. The purpose is to check whether the 
respondent is aware about his/her health conditions. Asking health related questions not only give a 
chance to a respondent to overview his/her health condition, but also provide collective information 
about health of teenagers in the society. Even if the respondent would not answer correctly due to 
any reason, at least he/she would think and realize any sort of problem by themselves. 
Questionnaire was adopted from the survey of world health organization and constructed in both 
Urdu and English languages separately, keeping in mind that most of the targeted population might 
not be comfortable in the English version as they are in their learning stage and could have 
difficulty in understanding the language, which might result in misleading information. Each 
question has been asked about the difficulty the respondents have had in doing work, moving 
around, listening, seeing, understanding, recognizing and remembering thing etc., considering the 
last 30 days. In order to get true response, each question is scaled from 1 to 5, 1 being (at a 
minimum) “none of the time” or “no problem” and 5 being the “all of the time” or “extreme 
problem”.  

From this survey we have focused our attention toward an important public health issue of 
problematic sleep which requires accurate diagnosis. Sleep problem is referred as both symptom 
and sign of specific disorder, known as “insomnia”. (Roth, 2007) defines “insomnia” in survey 
studies as a positive response to either question “Do you have difficulty falling or staying asleep?” 
or “Do you experience difficulty sleeping?” According to International Classification of Sleep 
Disorder, 2nd edition (ICSD-2) “insomnia” is defined as having complaints of difficulty in 
initiating and maintaining sleep or wake up too early or having a sleep that is of poor quality, such 
difficulties occur even with appropriate circumstances and adequate opportunities for sleep 
(Schutte-Rodin et al., 2008) (Buysse, 2008), which results in at least one of the following daytime 
dysfunctioning. That are, daytime sleepiness; fatigue or anxiety; concentration, remembering or 
focusing problems; difficulty in complex mental tasks; social or vocational dysfunction; poor 
school/job performance; irritable or bad mood. Having tension, headache or gastrointestinal 
symptoms in response to sleep loss; motivation, energy or initiative reduction; proneness for 
error/accidents at work or while driving and concern about sleep problem (ICSD-2). Here, we 
consider variables which are daytime impairment associated with insomnia as either symptom or 
diagnostic criteria. We named the set of these variables as “GHP-Insomnia data”. The selected 
questions are as follow: 

R: How much difficulty did you have with concentrating and remembering things? 
(Concentration Problem) 
C: How much difficulty did you have with analyzing and solving problem in day to day 
life? (Cognitive Issue) 
L: How much difficulty did you have with learning new tasks, for example, learning how to 
get a new place? (Learning Issue)  
I: How much did you feel irritable or having a bad mood? (Irritable) 
S: How much difficulty did you feel in falling asleep, waking up frequently during night or 
waking up too early in the morning? (Problematic sleep) 
 
We have used a total of 1289 responses after discarding the responses having missing values 

for this analysis. For convenience, 5-level likert scale has been reduced to binary as “1-No 
difficulty” being marked as a negative response (“1”) and the rest of the level of having difficulty 
of any degree (That are; 2, 3, 4, 5) are marked as a positive response (“2”). Summary of latent class 
model fitting up to 5 classes are presented in Table 5, in which the AIC is minimum in 3-class 
model and BIC in 2-class model. The difference between the values of Gଶand χଶ for 1-class and 2-
class model is also an indication of the presence of a latent variable in the data.  
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Table 6 presents the estimated model parameters for 1 till 3-classes the probabilities 
presented are of a positive response to each item along with the respective estimated standard errors 
of estimates. In case of 2-class model the class proportions dividing the total sampled population in 
two groups are estimated as 67% and 33%. Class 1 (with the highest proportion of approximately 
867 out of 1289 total respondents), show high probabilities of having difficulty in each and every 
statement. Approximately, 674 out of 867 individuals in this class faced difficulty in concentrating 
and remembering things (R), 765 and 781 (out of 867) had difficulty in the cognitive issue (C) and 
feel irritable (I), respectively, in the same duration. Whereas, approximately 75% and 70% of the 
respondents had had problematic sleep (S) and issues in learning new tasks (L), respectively. Class 
2 on the other hand constitutes those respondents who felt irritable (I) (approximately, 311 out of 
422) and had problematic sleep (S) (approximately; 218 out of 422). The probabilities of having 
positive response to questions related to the concentration issue (R), cognitive issue (C) and the 
learning issue (L) are very low in class 2. The probability of being irritable or having a bad mood is 
high among individuals in class 2 although the probability of having sleep issue is also high but not 
too high. Individual in class 1 seems to have at risk of having Insomnia. In a 3-class model (see 
Table 6) number of estimated parameters increased but with a clearer grouping of individuals with 
an additional class. There are only 8% individuals in the total sampled population who marked 
negative response to difficulty in any of the question asked with high probabilities. In Class 1 (with 
approximately 108 individual out of 1289) none of the respondent feel being irritable or in a bad 
mood as well as only 37, 28, 31 and 39 (out of 108 individual) show difficulty in the concentration 
issue, cognitive issue, learning issues and problematic sleep respectively, and these probabilities are 
not very high. We marked this group as “healthy fellows”. 

Whereas, class 2 with maximum proportion of 835 out of 1289 individuals (64.7% class 
proportion) represents that group of people who are at great risk of insomnia since the probabilities 
are very high for each and every question asked, i.e. they have disturbed sleep (S) (624 out of 835 
marked positive response) as well as they face difficulty in daytime activities such as in 
remembering and concentrating things (R), cognitive issues (C), learning new tasks (L) and have a 
bad mood (I) with around 78%, 88%, 74%, and 89% probabilities, respectively. We marked class 2 
as “chronic-insomnia risk group”. Respondents in class 3 (class proportion is 26.89%) give 100% 
positive response to being irritable (I) and 204 out of 347 respondents complain problematic sleep 
(S), although this group of individuals have no difficulty, in analyzing and solving day to day 
problems in life (C) (with 62.8% proportion of 347), in concentrating issue (R) (with 51.38% 
probability) and 81.54% proportion of 347 in learning new tasks (L). For class 3, the probability of 
having disturbed sleep is slightly high; this might be due to reason of having a bad mood of all 
individuals of this group. Feeling irritable might be a sign of anxiety or depression due to social or 
psychological issues, which may result in the nighttime sleep problem. We marked class 3 as 
“chronic irritable group”. 

 
Table 5. Results of Fitting Latent Class Models for GHP data 

 1 class 2 class 3 class 4 class 5 class 
AIC 7752.916 7545.709 7536.830 7540.031 7546.453 
BIC 7778.724 7602.487 7624.577 7658.748 7696.140 
 G2 (Likelihood ratio /deviance statistic) 257.969 38.762 17.883 9.084 3.506 

χ2 (Chi-square goodness of fit) 341.947 37.597 17.706 8.896 3.406 

Number of estimated parameters 5 11 17 23 29 

maximum log-likelihood -3871.45 -3761.85 -3751.41 -3747.01 -3744.22 
-2logλ 219.206 20.880 8.800 5.577 
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Table 6. GHP survey data; Latent class model parameter estimates for 1 to 3-classes (probabilities of having 
difficulty) 

 1-latent class 2-latent class model 3-latent class model 

Model Class 1 Class 2 Class 1 Class 2 Class 3 

R 0.6633 0.7772 0.4290 0.3459 0.7778 0.4862 

 [0.0136] [0.0207] [0.0391] [0.0567] [0.0222] [0.0457] 

C 0.6920 0.8823 0.3005 0.2632 0.8804 0.3716 

 [0.0137] [0.0255] [0.0543] [0.0627] [0.0302] [0.0695] 

L 0.5516 0.7062 0.2335 0.2970 0.7368 0.1846 

 [0.0145] [0.0254] [0.0434] [0.0558] [0.0345] [0.0703] 

I 0.8472 0.9006 0.7372 0.0000 0.8930 1.0000 

 [0.0102] [0.0130] [0.0285] [0.0000] [0.0143] [0.0000] 

S 0.6734 0.7493 0.5172 0.3677 0.7481 0.5884 

 [0.0133] [0.0192] [0.0346] [0.0565] [0.0199] [0.0378] 

Class Proportion 0.6729 0.3271 0.0835 0.6476 0.2689 

 [0.0452] [0.0452] [0.0110] [0.0597] [0.0549] 

 
The cross classification table (see Table 7b) of latent class membership against problematic 

sleep (S: insomnia) for the 3-class model present that 32.6% of the total individuals responded that 
they did not have problematic sleep at any time during the last month, whereas, 32.58% had 
problematic sleep, some of the time. The marginal totals for problematic sleep for responses “A 
good bit of the time”, “Most of the time” and “All of the time” are 17.22%, 10.7% and 6.8%, 
respectively. As, we have converted the responses dichotomously as “no difficulty (1)” and “having 
difficulty of any degree (2  (2, 3, 4 & 5))”. Therefore, the cumulative for responses (2, 3, 4 & 5) 
of “having difficulty of any degree” gives 67.33% of the total respondents. The proportion of class 
membership obtained through the cross classification against problematic sleep (S) are 
approximately the same as obtained through the fitted model (see Table ), that are, 8.9% (116 out of 
1289), 66.4% (856 out of 1289) and 24.5% (317 out of 1289) for classes 1, 2 and 3, respectively 
(see Table: ). The distribution of individuals in each of the 5-levels of responses clearly show that 
in class 1 (marked  as “healthy fellows”), 66.37% of the individuals do not face any difficulty in 
sleeping, while only 2.58% and 6% of the total face difficulty “all of the time” and “most of the 
time”, respectively. Although, the cumulative percentage of responses “some of the time” and “a 
good bit of the time” is 25% (29 out of 116). 

 In class 2 (marked as “chronic-insomnia risk group”), 37.5% of 856 respondents marked no 
difficulty in having asleep during the nighttime. Even though, only 65 of 856 (6%) respondents had 
sleep problem all of the time, but the remaining cumulative of difficulty (low to marginally high 
degree; responses 2, 3 &4) is 56.15% which is quite alarming. The percentage distribution in 5-
level scale of having asleep at bedtime for the last group (class 3) of “chronic-irritable” show that, a 
total of 73.7% of 317 respondents faced difficulty (for responses; 2, 3, 4, & 5). The individual 
percentages of having difficulty are also very high, that are 35%, 19.8%, 11.2% and 7.59% for 
responses 2, 3, 4 & 5, in class 3, as compared to other classes. This might be due to irritability they 
were facing during that time, which could be a cause of any social, psychological or mental 
pressure. The cross classification table for a 2-class model is also presented (see Table 7a) for 
reader interest. We will now assess the empirical null distribution of  -2logλ  for GHP-Insomnia 
data. The estimated parameter of 1- till 3- latent class model provided in Table--- are used for 
booting hypothetical populations based on these estimates. For each LRT1,2 ,  LRT2,3 and LRT3,4, 100 
replications of bootstrap samples are obtained on which non-central χ2 distribution with df =E(LRTt-

1,t) and ncp =[V(LRTt-1,t)]
-1 is assessed for fitting distribution. 
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Table 7. GHP-Insomnia data: Cross classification tables of latent class membership against problematic sleep 
(insomnia) for: (a) 2-class model; (b) 3-class model 

 Latent class membership 
 
Total Problematic sleep 

(insomnia) 

 
“Healthy Fellows group” 
Class 1 

“Chronic-insomnia risk 
group” 
Class 2 

1-None of the time 189 232 421 
2- Some of the time 92 328 420 
3-A good bit of the time 44 178 222 
4-Most of the time 32 106 138 
5-All of the time 22 66 88 
Total 379 910 1289 

(a) 
 

 Latent class membership 

 
Total Problematic sleep 

(insomnia) 

 
“Healthy 
Fellows group” 
Class 1 

“Chronic-insomnia 
risk group” 
  Class 2 

“Cornice-
irritable group” 
Class 3 

1-None of the time 77 225 119 421 
2- Some of the time 22 300 98 420 
3-A good bit of the time 7 170 45 222 
4-Most of the time 7 96 35 138 
5-All of the time 3 65 20 88 
Total 116 856 317 1289 

(b) 
 

The significance values obtained from BLRT1,2, BLRT2,3 and BLRT3,4 are 0.265872, 
0.664608 and 0.08312 against test values 219.206, 20.88 and 8.8 each with 3 degrees of freedom, 
respectively, (see Table 8; see also Figure 4), show good fit of non-central χ2 distribution for each  
BLRTt-1,t. 

 
Table 8. GHP-Insomnia data (size B = 100); Observed frequencies; Expected frequencies (obtained through 

the fitting of non-central χ2 distribution; (a)  LRT1,2 ; (b)  LRT2,3; (c)  LRT3,4 
 

LRTଵ,ଶ Observed Frequency Expected Frequency 
(0.73,3.57] 16 10.80113 
(3.57,6.41] 24 29.29937 
(6.41,9.24] 25 27.83557 
(9.24,12.1] 18 17.3231 
(12.1,14.9] 11 8.624018 
(14.9,17.8] 4 3.742099 
(17.8,20.6] 1 1.479546 
(20.6,42.5] 1 0.835142 
Total 100 99.93998 
𝛘𝟐(goodness of fit) 
Test Statistics 

3.959493 

Degrees of freedom (df) 3 
P-value 0.265872 

(a) 
 

LRTଶ,ଷ Observed Frequency Expected Frequency 
(0.75,3.08] 12 12.08323 
(3.08,5.41] 26 26.62737 
(5.41,7.74] 29 25.28383 
(7.74,10.1] 17 17.12687 
(10.1,12.4] 7 9.693352 
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(12.4,14.7] 5 4.908126 
(14.7,17.1] 2 2.303954 
(17.1,38.7] 2 1.758664 
Total 100 99.7854 
𝛘𝟐(goodness of fit) 
Test Statistics 

1.577037 

Degrees of freedom (df) 3 
P-value 0.664608 

(b) 
 

LRT ଷ,ସ Observed Frequency Expected 
Frequency 

(0.155,2.21] 15 16.22409 
(2.21,4.26] 29 29.66279 
(4.26,6.31] 31 23.90222 
(6.31,8.37] 8 14.75638 
(8.37,10.4] 11 7.985343 
(10.4,12.5] 3 3.994056 
(12.5,14.5] 2 1.895745 
(14.5,35.9] 1 1.542697 
Total 100 99.96332 
𝛘𝟐(goodness of fit) 
Test Statistics 

6.672024 

Degrees of freedom (df) 3 
P-value 0.08312 

(c) 
 

(a) (b) (c) 
 

Figure 4. GHP-Insomnia data (B=100);  Histogram along with a superimposed non-central 𝜒ଶ 
curve for bootstrap sample of; (a)  LRT1,2 ; (b)  LRT2,3; (c)  LRT3,4 

 
9. Conclusion 
We have considered four different data sets: Mastery, Role Conflict, KUTS panel and GHP-

Insomnia data. The task of establishing the empirical distribution of  -2logλ when fitting latent class 
model reveals that non-central χ2 distribution with df = E(LRTt-1,t) and ncp = [V(LRTt-1,t)]

-1 is very 
well fitted (with high percentage) to each data set (either “training” or “test”) and that one can rely 
on calculating the significance value of -2logλ obtained through the empirical null distribution (i.e. 
Non-central  χ2 distribution).  
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