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Abstract 
This author already published one paper about semantic reading in mathematics teaching (Naziev, 

2014). The paper contained short instructions on what semantic reading is and several more or less simple 
examples of the application of semantic reading in school algebra, geometry, probability, and calculus. In 
this paper, we will give a more instructive definition of semantic reading and several more complicated 
and, we hope, more interesting examples. 

Our work is connected with the results in artificial intelligence (Garrido, 2017). An important 
subject in the artificial intelligence is the automated (or mechanical) theorem proving, and, in particular, 
mechanical geometry theorem proving (Chou, 1988). The development of this last area has showed the 
evidence that in order to carry out proofs of geometry theorems mechanically, we have to strictly follow 
some rules and axioms (Chou, 1988). This is the main goal of our article, to show how important it is in 
mathematics, not only in artificial intelligence, to strictly follow axioms, definitions and theorems, that is, 
to read them semantically. 

Keywords: Teaching Mathematics, Semantic Reading, Quantifiers, Quadratic Trinomial, 
Archimedes, Zeno. 
 
1. Semantic reading: definition and first examples 
To find the right approach to the definition of the notion of semantic reading, the following 

dictum of the great mathematician will help us: 

Mathematics is the art of calling different things by the same name.” 

(Henri Poincare) 

Note that every speech act connects two sides: the sender (the speaker, the writer) and the recipient 
(the listener, the reader). The sender calls different things by the same name, but this does not mean that 
the recipient automatically sees these different things with the same name. He must be ready and capable 
of this. Thus, for our purposes, the above quotation of H. Poincare should be clarified: 

Mathematics is the art of naming different things with the same name, combined with 
the art of seeing different things behind the same name. 

Note, further, that if the same name names different things, then each message, in the context 
of which this name is included, inevitably reports various things, that is, carries with it different 
meanings. Thus, the art of calling the same name different things should have the continuation in the 
art of seeing in the same message different meanings. 

Now, in general, it is clear what needs to be called semantic reading. 

Semantic reading is the art of discovering in the readable all the variety of meanings 
contained in it and extract from it the meaning that most closely corresponds to the 
problem being solved. 

REMARKS. 1) Semantic reading is an art. By this reason, we cannot teach semantic reading. You 
can teach the craft, but not the art. Art can only be mastered, studying patterns, imitating them and 
improving them. For this reason, both in our previous work, and in the now proposed one, there are 
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almost no theoretical considerations. But there are many examples, imitating and improving, the 
reader can gradually, through tireless independent exercises, begin to master this difficult art. 

2) Perhaps it would be more correct to talk here about the semantic perception or even about 
the semantic comprehension. But we will not go far from the usual terminology. Let it be a 
semantic reading. Only, let’s not forget that one can read not only texts in the usual sense of the 
word. 

Animals read by smelling. People sometimes read through the eyes. The musicians read the 
notes. Analyzes are read in chemical laboratories. Radio-operators read the audio signals transmitted 
by the radio. Seamen read messages sent using signal flags. And so on. So, the word “reading” is 
not a big limitation here. 

We underline: 

• semantic reading is an art; 
• “all diversity” is, of course, ideally a more mundane formulation — “as many senses as 
possible”; 
• and also, to see; it is desirable to use as many senses as possible, but in each specific 
situation, as a rule, only one of them is needed. 

Let’s give the first examples of productive use of semantic reading.  

EXAMPLE 1. In the sentence , where a and b denote real numbers, one can see at least four 
senses. The first is straightforward: the sum of numbers a and b equals 0. But we can look at a 
and say what we see: we see that the sentence is telling to us that a is a number whose sum with b 
equals 0. What does this mean? This means that a is opposite to b, that is . Proceeding 
analogously with b we discover that the sentence is telling that . Then, combining, we will 
“hear” from the sentence that  and . Surely, it is quite important that pupils 
can see all these senses and use them in their work.  

EXAMPLE 2. In the sentence  we can see many senses. The first is straightforward:  is the 
same number as 8. But we can look at 2 and say what we see. This gives us the new sense of the 
above statement, namely that 2 is a number whose cube equals 8, that is, 2 is cubic root of 8, 

. And this means that there exists cubic root of 8 — the third sense of the given sentence. 
Looking to 3 at the given sentence we will see that 3 is the exponent in which 2 gives 8, that means 
that 3 is the logarithm of 8 on the base 2,  — the forth sense. And this means that there 
exists the logarithm of 8 on the base 2 — the fifth sense! Five senses in one sentence! 

EXAMPLE 3. And in the sentence  we can see at least four senses. The first is 
straightforward: in every point  the derivative of sin equals . This gives to us a new sense: 
the function sin has derivative, that is, it is derivable on . Turning to integral calculus we learn a 
new sense of this statement according to which sin is antiderivative of  on . And from here –
the forth sense: the function  has antiderivative, that is, it is integrable on . 

In conclusion of this series of examples let me repeat one example from my previous work, 
my favorite example, my own proof of one well known identity.  

EXAMPLE 4. We know from the properties of the module of real number that  and that 
. As far as we think about these properties separately they constitute only two separated 

properties, and nothing more. But let’s combine them in conjunction 

. 
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We will see that  is a nonnegative number whose square equals . What does this mean? 
This means that  is the arithmetical square root of , that is .  

We obtained the new proof of well-known identity and obtained it by discovering a new 
sense in known statements, that is, by semantic reading. I do not know any mathematics textbooks 
that contains this remarkable proof (I hope, you will agree that this proof is remarkable). In my 
opinion, this is because traditional didactic of mathematics does not pay much attention to this side 
of mathematics teaching, to the semantic reading. The traditional didactics of mathematics is based 
on actions and “rules of processing” (Freudenthal, 1991, p. 3). Interested readers can find more 
detailed discussions of this subject in the first section of my above mentioned paper. 

2. The role of mathematics in the formation of the ability to semantic reading 
Much is written about using semantic reading in the teaching of native or foreign language, 

literature, history, chemistry, biology, and comparatively little about the semantic reading in the 
teaching of mathematics. The role of mathematics in the formation of the ability to semantic reading 
and focusing on it is underestimated. And in vain. In reality, 

no academic subject awakens in a person the ability to understand the meaningful 
speech addressed to him as mathematics does. 

To get a feel of it, let us look at an example. 

Osip Mandelstam 

 

SILENTIUM 

 

She who has not yet been born 
Is both word and music 
And so the imperishable link 
Between everything living. 

The sea’s chest breathes calmly, 
But the mad day sparkles 
And the foam’s pale lilac 
In its bowl of turbid blue. 

May my lips attain 
The primordial muteness, 
Like a crystal-clear sound 
Immaculate since birth! 

Remain foam, Aphrodite, 
And—word—return to music; 
And, fused with life’s core, 
Heart be ashamed of heart! 
 

1910 

Besides the word “silentium” in the title, which means silence, we understand every word in 
this poem. But what is the sense of the poem in whole? The reader can find in the literature tens of 
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works devoted to the discovering the sense of this poem. We suggest the reader to find his own 
solution to this problem. (We must only warn the reader that the translation does not accurately 
convey the meaning of the original. In Mandelstam, the poem begins the Russian word “она”, 
which can be translated both as “she” and as “it”. The control question to those who want to 
discover the sense of this poem would be: what is this she or it?) 

Now, compare this poem with the following one: 

If two sides of one triangle and the angle between them are equal to the sides and angle 
between them of another triangle then these triangles are congruent. 

In this “poem” we can easily understand not only every word but the statement in the whole. 
And even if we could not, we know where we can find answers to all our questions. And in the 
process of learning mathematics teachers show us how one can search the answers to such 
questions. 

3. Semantic reading in the problems of elementary geometry 
One of the divisions of mathematics, where semantic reading is supposed to be vital but 

constantly ignored, is school geometry. The reason is quite understandable, although not always 
noticed. It is in a false sense of clarity, generating the illusion of evidence in geometry. Here are 
examples that support these statements. 

The first of these examples we took from a remarkable book on the mechanical geometry 
theorem proving, (Chou, 1988) (although this example does not belong to Chou, it appears also in 
the book Adler C. F., 1958). 

EXAMPLE. Every triangle is isosceles. 

PROOF. Let ABC be a triangle as shown in Figure 1. We want to prove СА = CB. Let D be the 
intersection of the perpendicular bisector of AB and the internal bisector of angle ACB. Let 

 and . It is easy to see that △CDE ≅ △CDF and △BDF ≅ △ADE. Hence CE + 
EA = CF + FB, i.e., СA == CB. QED! 

 

Figure 1 
 

This example clearly reveals the shortcomings of teaching mathematics in isolation from the 
semantic reading. It follows this guideline: “Allow your hand to draw everything that it pleases, 
look at what happened, and base the solution of the problem on the fantasies of your hand!” 

The example is really remarkable, but it is invented while the following examples are taken 
from real life, namely, from a textbook written by the famous Russian mathematician and 
mathematics didact A. V. Pogorelov, Pogorelov A. V. (2013). 

§ 5, PROBLEM 3. Prove that if the diameter of a circle passes through the midpoint of the chord then 
the diameter is perpendicular to the chord. 
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And the author provides the following Figure.  

 
Figure 2. A circle, a chord, and a diameter 

But the triangle AOB will not exist if the chord passes through the center of the circle, and 
the diameter in this case is not necessary perpendicular to the chord (draw the corresponding 
picture!). So, this famous mathematician and mathematics didact builds the solution not on axioms, 
definitions and theorems but also on extra considerations such as a Figure drawn by his hand! This 
mistake is especially astonishing because, first, it is evident, and, second, even in Euclid Elements 
one can see the correct statement: if a diameter of a circle passes through the midpoint of a chord 
that is not a diameter, then the diameter is perpendicular to the chord. 

4. Semantic reading and the explication of quantifiers 
Quantifiers first appeared explicitly in 1879 in the little but great book Begriffsschrift: eine 

der arithmetischen nachgebildete Formelsprache des reinen Denkens by Gottlob Frege (1848–
1925). Thanks to this book, it became gradually obvious that mathematical language is literally 
filled with quantifiers. However, the methodology of teaching mathematics has not yet realized this. 
In the traditional formulation of statements, quantifiers are shamefully omitted, making it difficult 
to understand the real sense of what is asserted. And sometimes it takes a lot of effort to restore 
quantifiers in their rights and to reveal the true meaning of the statements. Let us illustrate these 
claims with examples. We begin with the traditional formulation of a well-known theorem about 
medians. 

 EXAMPLE. Medians of a triangle intersect at one point. 

 Regularly I show to my students and to teachers I am working with the following picture 
(see Figure 3) 

 
Figure 3. A triangle with medians and “one” point 

and tell them: “This is a triangle, these are its medians and this is one point; but the medians do not 
want to pass through this one point!”. It is funny, but this unpretentious example confuses many 
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students and even many math teachers. As a rule, it is necessary to ask many questions before the 
“honest” formulation of the theorem appears. “Which triangle, this or that? What point, any or not?” 
After answering these questions, we, at last, came to the genuine sense of this theorem. 

In every triangle, there exists a point through which all its medians pass. 

Without this reformulation there is no and cannot be a correct understanding of the meaning 
of the theorem under consideration.  

 But this does not exhaust the role and significance of this reformulation. We see in it what 
this author calls “quantifiers zigzag”, “for every … there exists … such that for every …”, . 
Precisely this logical structure has many theorems for analysis: . It is well 
known that these theorems present great difficulties for beginners to study mathematical analysis at 
the university. These difficulties would not have been so great if the foundations for understanding 
such theorems were laid in the school course of mathematics. There exist a lot of theorems in school 
mathematics having such a logical structure: analogous statements about bisectors, altitudes, 
mediatrixes, statements about existing inscribed and circumscribed circles, spheres and so on. 

Now, turn to the definition of rational numbers in its traditional form. 

A number is said to be rational if it is a quotient of the division of a whole number by a 
natural number.  

Or, more shortly: 

A number  is said to be rational if  where m is whole, n is natural. 

In my teaching practice, there was the following almost fantastic case. I proposed to the 
pupils of one mathematics (sic!) class the  

PROBLEM. Prove that the number 1sin is irrational. 

After short period, suddenly I heard from the pupils that the problem is trivial because it has the 
following  

“SOLUTION”. To say that 1sin is rational means to say that n
m1sin where m is whole, n is 

natural. So, to say that 1sin is irrational means to say that n
m1sin  where m is whole, n is 

natural. This is true because 2
31sin  where 3 is whole and 2 is natural. 

Why did this mistake appear? Because the teacher, when he defined the set of rational 
numbers, omitted the quantifiers and gave to his pupils the abovementioned “definition” instead of 
genuine one:  

A number  is said to be rational if there exist numbers m and n such that  and m is 
whole, n is natural. 

According to this definition, the rationality of a number is the fact of the existence, not of the 
equality! 

5. About the meaning of the expression “roots of a square trinomial” and erroneous 
formulations of Vieta’s theorem for quadratic trinomials 

The following remarks have arisen from a comparison of two solutions of the problem 

(Skanavi M. I. ,2013, PROBLEM 6.125) Find the coefficients  and  of the equation 

 , (1) 
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if it is known that the numbers  and  are also its roots. 

FIRST SOLUTION. Let  and  be the roots of the equation (1). Then, by Vieta’s theorem, 

  (2) 

By the first equation  by the second one  or . Therefore 1)  and  or 
2)  and . 

It is easy to verify that, conversely, in each of these two cases the numbers  and  are the 
roots of the given equation. 

ANSWER.  and ; or  and . 

It seems that the authors of the problem, solved it in exactly this way because they have the 
same answer. 

Now imagine a pupil who has not yet studied the theorem of Vieta. He will solve this task in 
another way. 

SECOND SOLUTION. Let  and  be the roots of the equation (1). Then, by virtue of the 
definition of the root of an equation, 

  (3) 

By the second equation, . In the first case, from the first equation, we find that 
; in the second case the first equation takes the form 

  

and has two roots:  and . 

Thus, the system has three solutions: 1) ; 2) ; 3) . 

It is easy to verify that, conversely, in each of the three cases the numbers  and  are the roots of 
the given equation. 

ANSWER. ; ; . 

We obtained the answer different from the above! Let’s try to discover the cause of the discrepancy.  

 Let . Then the equation (1) takes the form: 

   (4) 

 By a direct calculation, we can convince ourselves that  and  are indeed the roots of the 
equation. However, their sum is not equal to the second coefficient and the product is not equal to 
the free term! Strange… In the school textbook we read (Freudenthal, 1991, p. 247): 

if  and  are the roots of the equation , then  and . 

 Hence, 

if  and  are the roots of the equation , then , . 

In particular, taking , we obtain: 
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if  and  are the roots of the equation ,  

then  and . 

 Since the numbers  and  really are the roots of the equation , must 

hold the equalities  and . But they obviously do not hold! 

 And here is another theorem (Freudenthal, 1991, P. 20): 

 If  and  are the roots of the quadratic trinomial ,  

then . 

Hence, 

If  and  are the roots of the quadratic trinomial , then 
. 

In particular, for , we obtain: 

if  and  are the roots of the equation  then  

Again the premise of the theorem is correct, therefore, the conclusion must be true, but it is 
obviously wrong. 

 Let us estimate the situation. In the facts that ,  and 

 there are no doubts. It turns out that it is not true that  and  are the 

roots of the equation . This is fantastic:  is the root of the equation but  and 

 are not the roots! 

 So the question naturally arises, what is this, the rootS of the equation? 

In fact, what does it mean that  and  are the rootS of the equation? Weird question! 
Asserting that  and  are integers, it means to assert, exactly, that  is an integer and  is an 
integer. Asserting that  and  are non-empty sets, means to assert, precisely, that  is a nonempty 
set and  is a non-empty set. To assert, that  and  are Russians, means to assert, exactly, that  
is a Russian and  is a Russian. So things are going everywhere, in mathematics and in real life. 
And only in one place, in the algebra textbook, in the study of quadratic equations, the language is 
used differently. To assert that that  and  are the roots of a square trinomial does not mean to 
assert that  is a root and  is a root, it means to assert something else! What exactly? 

 Perhaps, in the above theorems from the school textbook it is implicitly assumed that  is 
the smaller and  is the larger root of a square trinomial? — If it was supposed so, this does not 
matter, because the expressions  and  are symmetric relatively to  and . 

 Or maybe the matter is that the problem posed about the rootS of the equation (in the plural), 
that is implicitly assumed, that  and  are different? — No, they are talking about the roots also in 
those cases where the root is only one. For example, directly before the above theorem from P. 20, 
we read: 

in the case where the discriminant of the quadratic trinomial equals zero,  
they say that this trinomial has two equal roots. 
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 To understand the matter here, let us compare the cases  and . In both 
cases,  and  are the roots of the equation , but in the first case, these are all its 
roots while in the second one, not all are its roots. It turns out that the matter is just in this. The 
correct formulation of the above theorem is another. 

THEOREM 1. Let  and  be the roots of a square trinomial  and it has no 
other roots. Then 

  

PROOF. Suppose that the conditions of the theorem are satisfied. Then, since  is a root, 
. Hence, for all , 

  

This shows that  is the root of our trinomial. Let’s show that it equals to . We 
will argue as follows.  

 By the hypothesis, the trinomial has no roots other than  and . This means that 
 or . If , then there is nothing to prove. If 
 then, by virtue of the decompositions obtained, the trinomial has only one root. 

 Hence,  and again, .  

 Thus, . Hence  and . 

This is what we had to prove. 

 The converse is also true. (By the way, Vieta himself formulated this converse, which in the 
current school textbooks is called the converse theorem of Vieta.) 

 THEOREM 2. Let  and  be any real numbers and  

  

Then  and  are the roots of the square trinomial  and this trinomial has no 
other roots. 

 PROOF. Indeed, let the conditions of the theorem be satisfied. Then, for any , 

  

Hence, for any , 

 . 

From this, it is clear that  and  both are the roots of the square trinomial  and 
it has no other roots. 
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 REMARK. By the way, this theorem shows that traditional formulation of the so-called 
Vieta’s theorem in the school textbooks in mathematics (provided at the beginning of this part of the 
paper) is not correct.  

 Now it is easy to explain the reason for the discrepancy in the answers obtained above. 
Strictly speaking, the first of the solutions we gave is erroneous, because, as shows the second of 
the theorems proved here, for the fulfillment of the Vieta’s relations is not sufficient that the 
numbers  and  are the roots of the equation , it is also necessary that there be no 
other roots. 

 Since nothing is said about this in the condition of the problem, the correct solution is the 
second one. This is exactly how any normal man would solve this problem, not spoiled by 
erroneous statements of Vieta’s theorem, like cited above. (For no normal person after hearing that 
Ivan and Peter are Russians, will think that, thus, there are no other Russians!) 

 DIGRESSION (on formalization of Vieta’s theorem). Let us formalize (for teachers, not for 
pupils!) our considerations. The assertion that  and  are the roots of the equation  
means that whenever  or , then the equation holds, that is  or, in short, 

. 

 The assertion that the equation has no other roots than  and  means that the converse of 
this statement holds, that is, every root of the equation equals either  or , in short  

. 

 The assertion that  and  are the roots of the equation and there exist no other 
roots means that the conjunction of these two statements holds, 

. 

 Applying to this conjunction the law of distributivity of the general quantifier and the 
conjunction we get 

. 

So, Vieta’s theorem consists in that whenever this hold, then  and , 
that is  

. 

The converse of the Vieta’s theorem means that the converse of this implication holds, what 
in conjunction with this implication gets the equivalence  

. 

Taking into account that this is true for all  and , we get, so to say, the bilateral Vieta’s 
theorem, 

. 

Of course, there can be no question of treating these considerations with schoolchildren. But 
the teacher needs to look at the full wording at least once, so that he understands that it is not so 
simple with Vieta’s theorem. The simple formulations and easy proofs take a place only because of 
additional, difficultly formalized considerations are added to them unnoticed. 
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6. Semantic reading in the history of mathematics 
History of mathematics is the area of knowledge where semantic reading is vital. In this 

section, we adduce examples of the results obtained in the past with the help of what is now named 
semantic reading, and examples of the contemporary application of semantic reading to the solution 
of the problems left to us from the past. 

From the past we have the message (see Figure 4): 

. 
Figure 4 

First of all, we must translate it to a modern language (and this also requires semantic 
reading). Upon translation we get something like this (the text is in Russian, see Figure 5): 

 
Figure 5 

After that we need to include a sense into this set of signs. When Russian academician 
W. W. Struve made this, he saw the rule of evaluation of the volume of a regular truncated pyramid 
with a square base! That is what semantic reading is! 

6.1. Semantic reading in “The Method” by Archimedes 
The greatest master of semantic reading was Archimedes (287–212 BC). Let us look on his 

discovering of, how they say, the formula of the volume of the sphere, or, more precisely, the 
interrelation between volumes of a cylinder and a sphere inscribed in it, displayed in his work “The 
method” (Archimedes, 1962). 
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Figure 6. Archimedes: determining the volume of the ball inscribed to the cylinder 

Archimedes begins with a sphere of radius R and a cylinder and a cone of radiuses 2R and of 
heights also 2R, placed as it is shown in section on the left picture above (axes of the cylinder and 
the cone are horizontal). He intersects this combination of bodies by a plane perpendicular to the 
axes and detached to the distance x from the vertex of the cone (black segment on the left picture 
below). Then the cylinder gives in the section a circle of radius 2R, the cone gives a circle of 
radius x, and the sphere gives a circle of the radius, say, y. Well known statement about products of 
the segments of two intersecting chords in a circle gives in this particular case the equality 

, or, equivalently, . Multiplying both sides of this equality by  and 
2R he obtained that . All this does not require semantic reading. But what 
did Archimedes do further? In the last equality he sees the statement about equilibrium of the lever. 
Namely, he takes the lever with the support, say, A and arms AT of longitude 2R and AX of 
longitude x, and places the circle of radius x and the circle of radius y so that the center of gravity of 
each turns out to be below , and places the circle of radius 2R so that it is perpendicular to the 
lever and the center of its gravity turns out to be in X. Then turns out that the equality 

 expresses, exactly, the condition of equilibrium of the described lever 
(look at Figure 6 where the first two circles are represented by red and blue horizontal segments 
while the third one by the black vertical segment; in order to reduce the size of picture we placed 
one circle above T, not below).  

After that Archimedes writes: 

“If now, taking such circles, fill them as the cylinder as the ball with the cone, then the 
cylinder, remaining in the same position, will be in equilibrium with the ball and the cone 
together with respect to the point A if we transfer them to the lever in  and placed so that 
the center of gravity of each turns out to be below .” 

 This gives to him the equality 

 

where all denotations are naturally interpreted. Now denote by  the volume of the cylinder 
circumscribed around the sphere. We obtain that 
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and, finally, 

. 

 In words, a ball takes two thirds of the volume of the circumscribed cylinder. 

We must underline that Archimedes did not consider the above reasoning a proof of this 
interrelation. For him this was only a way to guess what should be the result, after what the result 
must be proved through mathematical, not mechanical, reasoning (in the times of Archimedes these 
were the so called “apagogical reasoning”). 

 
6.2. Semantic reading for the solution of Zeno’s aporia “Achilles”  

 From Archimedes turn to Zeno with his aporia “Achilles”. We know about this aporia from 
the mention in Aristotle’s Physics and from the commentary Simplicius(b) On Aristotle’s Physics, 
1014.10 (see Stanford Encyclopedia of Pholosophy in our references). Here we try to resolve this 
aporia with the help of semantic reading.  
 First, recall the formulation of the aporia. Achilles and the turtle are moving in a straight line 
in one direction. At the initial moment, Achilles is on some distance behind the turtle, but it is clear 
that he must catch up with her (because he is fleet-footed!). No, argued Zeno. Before Achilles 
catches up with the turtle, he must reach the place where the turtle was at the moment of their 
launch. In the time that he needs for this, the turtle will have time to move on, so that when Achilles 
gets to the point where the tortoise was at the moment of launch, the turtle will again be ahead of 
Achilles, and everything will start from the beginning. So, concluded Zeno, Achilles will never 
overtake the tortoise. 
 What is paradoxical in this reasoning? We are sure that Achilles must overtake tortoise but 
Zeno show us that this will not be the case. We are sure, let us repeat it, that Achilles will overtake 
tortoise. How will this happen? Do we think that Achilles suddenly equals a turtle? No, familiar 
notions tell us that if Achilles catches up with the turtle, then the distance between them will 
gradually decrease to zero. Even this simple remark removes a valued part of the paradox in Zeno’s 
reasoning. Zeno simply lists some points in the process of chase, and the moments he lists them are 
preceding the moment when the turtle will be overtaken. So far, nothing is paradoxical. 

 And after that, the conclusion is suddenly made: “So, Achilles will never overtake the 
tortoise!” 
 There exists vast literature devoted to this aporia. They constructed theories of space and 
time, theories of motion but nobody thought to ask the 
 
 QUESTION: What does the word “never” mean here? 
 To make it clear why we ask this question,  we must turn for the minute to another question. 
What does the word “always” mean in the statement: “The number  is always divisible by 2”? 
Does it mean “at all times” or “for all n”? Although, of course, every mathematician is sure that he 
establishes truths for all time, nevertheless it is not a question of times, but of natural numbers, and 
“always” in this statement it means “for all n”. So, what does “never” mean in Zeno’s reasoning? If it 
means “in none of the above moments”, then the conclusion to which Zeno inclines us is correct, but 
nothing in it is paradoxical. All the reasoning of Zeno is then a particular case of the following:  
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“Let , , …, , … be the moments, in which the distance between Achilles and the 
tortoise is still different from zero. Then in none of these moments does Achilles overtake 
the tortoise.” 

 Very good, and no paradox! If, however, “never” refers to the time that is flowing regardless 
of enumerations chosen by Zeno, then Zeno’s conclusion is unfounded. To justify it, it would be 
necessary to establish that for any moment of time  there exists a moment  such that . 
Now we know that to prove this is impossible (because the sequence  is a sequence of partial sums 
of an infinitely decreasing geometric progression, and therefore it is limited). The Greeks in Zeno’s time 
did not know this, but this is unimportant. In order to compel the “bi-tongue” (as ancient Greeks called 
Zeno) to say no more, they did not need to know this. It was enough to ask Zeno to justify his 
conclusion. He would not have the success, and the problem would have been lifted. 
 That is all! I think that this is the final solution of the “Achilles” aporia. 
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