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Abstract 
Currently, Hadoop MapReduce framework has been applied to many productive fields to 

analyze big data. MapReduce applications based on the MapReduce programming model are used 
to generate and process such huge data. Due to various computational purpose, MapReduce 
applications have different resource requirements. For specific applications, the resource bottleneck 
of the cloud computing platform must inevitably impact its executive performance. Therefore, 
identification of the bottleneck about the allocated resource for MapReduce applications is crucially 
needed from the viewpoint of either cloud operators or program developers. In this paper, we model 
the relationship of resource usage parameters of MapReduce applications using multiple linear 
regression methods and investigate the minimum sampling time for stable modeling. Based on the 
analysis, we propose the approach which can be used to build stable performance model to expose 
the bottleneck resource of Hadoop platform and give the effective optimization suggestion. 

 

Keywords: MapReduce application; resource bottleneck; resource usage parameters; 
multiple linear regression; stable modeling; minimum sampling time 
 
1. Introduction 
As a popular computation framework, the Apache Hadoop (Apache.org, 2017) has been 

applied broadly to big data processing and analytic in many IT companies, such as Facebook, etc. 
Map/Reduce (Vavilapalli et al., 2013) is a computational programming model of Hadoop for 
processing huge amount data either in public clouds or in private clouds. Based on this 
programming model, the developers can write their MapReduce applications for different big data 
processing purposes, which may show various computation resource requirements. Though cloud 
computing techniques (Geneva, 2012) claimed that commodity computers can offer the unlimited 
resources over the internet, the over-provisioning or unbalanced-provisioning resource to 
MapReduce application should be avoided. Therefore, the precise identification of the bottleneck 
problem of allocated resource for MapReduce application is crucially needed from the viewpoint of 
either cloud operators or developers.  

Many efforts have been spent on the related studies. For example, L. Bautista Villalpando et 
al. (Bautista Villalpando, April, & Abran, 2014) modeled the relationship between performance 
measurements of big data application and the quality concepts of software engineering. 
Subsequently, on the basis of Amdahl's law regression methods (Rodgers, n.d.), Issa, J A et al. 
(Issa, 2015) proposed an estimation model to estimate performance and total processing time versus 
different input sizes for a given processor architecture. He intended to explore the relationship 
between processing time and input size of data. Glushkova. et al.(Glushkova, Jovanovic, & Abelló, 
2017) built a new performance model for Hadoop 2.x, which use the queuing network model to 
capture the execution flow of a MapReduce job and take architectural changes into account. These 
models proposed above only concerned the performance analysis with the given resource and did 
not mention the allocated resource declining the performance of Hadoop platform. A resource reuse 
optimization mechanism for MapReduce short jobs was developed by Shi. et al. (Shi et al., 2016), 
which effectively shortened the execution time of these jobs and significantly improved the 
resource utilization of cluster. Nghiem. et al. (Nghiem & Figueira, 2016) put forward a novel 
algorithm for optimal resource provisioning to get the exact amount of task resources, which 
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represented the best trade-off point between performance and energy efficiency for any MapReduce 
job running on Hadoop. According to the real social network data, Bakratsas. et al.(Bakratsas, 
Basaras, Katsaros, & Tassiulas, 2017) evaluated the performance of three algorithms when using 
solid state drives and hard disk drives as underlying storage for Hadoop’s MapReduce. However, 
these papers did not mention the bottleneck resource of Hadoop platform when running an unknown 
application. As a result, the performance analysis model for exploring the bottleneck resource might 
be beneficial to gaining better resource provisioning for cloud operators as well as designing high-
performance MapReduce application for developers. 

We build the regression model for a suite of typical MapReduce benchmark applications, 
including Wordcount, Wordmean, Wordmedian, Grep, Pi, Teragen, and Terasort. The first four 
applications respectively calculate the number of occurrence of words, the average length of words, 
the median length of words, and the matches to a regex in a text file. The Pi application uses the 
quasi-Monte Carlo methods(Levy, 2016) to estimate the value of the pi number. The Teragen 
application is used to generate rows of data to a file. Lastly, the Terasort application sorts the 
generated data from Teragen. All these benchmark applications require various resource intensive 
requirements. By applying the multiple linear regression methods(Ross, 2017a), the present study 
models relationships amongst resource usage parameters as well as significantly lagged usage 
parameters. The obtained model shows the resource bottleneck of MapReduce applications on 
Hadoop platform. Furthermore, the sampling time for each MapReduce application has a substantial 
impact on the fit quality of the regression model. The minimum sampling time of each application 
is the essential condition for stable modeling. Thus, the minimum sampling time of each 
MapReduce application is also investigated. To the best of our knowledge, this is the first attempt to 
use multiple linear regression methods to model the relationship of resource usage parameters as 
well as to investigate the minimum sampling time for Mapreduce applications. This study about 
exploring the bottleneck resource of cloud computing platform by building the stable performance 
model for applications is the gap in this era.  

In this work, our contributions are: 
 
 We model the relationship of resource usage parameters of several Mapreduce 

applications using multiple linear regression methods. 
 We investigate the minimum sampling time for stable modeling on resource usage 

parameters for Mapreduce application. 
 We present an approach to explore the bottleneck resource of Hadoop cloud computation 

platform. 
 

This body of the paper is organized as follows. Section 2 presents the methodology of modeling 
on resource usage parameters. In section 3, we explain the methodology of obtaining the minimum 
sampling time for stable modeling. The detailed results are presented in section 4. Section 5 shows the 
discussion and analysis of results. Conclusion and future direction are wrapped into the last section. 
 

2. Methodology of Modeling on Resource Usage Parameters 
 
2.1. Data collection 
The workloads for those applications, including Wordcount, Wordmean, Wordmedian, 

Grep, are generated with the use of hdfswriter.jar (written in java). The corresponding workload is 
100 GB text file. The workload of Terasort is 60 GB data generated from Teragen. The usage 
parameters of Teragen are captured when it generates 180 GB data. Pi is performed with 2000 map 
tasks in 10000000 times. 

Collectl utility is used to measure the total percentage of time spent of CPU processing job, 
the total memory usage, the total KB read/second from hard disk and the total KB write/second to 
hard disk of MapReduce applications with time resolution 1 s. Note that Collectl is a lightweight 
application that only occupies extremely few resources to gather time series data.  
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2.2. Explore Non-randomness  
The collected data in this work are time series data. Empirically, the autoregressive pattern 

always exists in time series data. Extracting autoregressive term is typically used to eliminate the 
autoregressive pattern of data. The autocorrelation function (Bhattacharya & Burman, 2016) is used 
to explore the non-randomness of each resource usage parameter and the partial autocorrelation 
function (Bhattacharya & Burman, 2016) is applied to determine the number of the significant 
autoregressive term. A quarter of the amount of observations is used to estimate autocorrelation and 
partial autocorrelation according to Box and Jenkins (Box, Jenkins, & Reinsel, 1994). 

Let xt denote the value of a time series at time instant t. The autocorrelation between xt and 
xt+k is given by autocorrelation coefficient, denoted by k, for k={1, 2, 3, ..., n}. 
 

          (1) 
 

The autocorrelation plot (ACF plot) (Box et al., 1994) shows the autocorrelation coefficients 
of a time series data at various lags. If at least one autocorrelation is significantly non-zero, it gives 
a strong evidence of non-randomness. 

The partial autocorrelation between xt and xt+k is defined by the conditional autocorrelation 
coefficient and is conditional on xt-1, ..., xt+k-1, denoted by ak, for k={1, 2, 3, ..., n}. 

 

      (2) 
 

The partial autocorrelation plot (PACF plot) (Box et al., 1994) plots the partial 
autocorrelation coefficients at various lags. When non-randomness of time series data is significant, 
PACF plot is used to find the number of the autoregressive terms. In this work, the largest PACF 
coefficient is used to identify the number of the autoregressive term. 

The basic assumption of drawing ACF plot and PACF plot is that time series data is 
stationary. The Ljung–Box Q test(Shams, Haji, Salman, Abdali, & Alsaffar, 2016) is used to 
identify the stationary of time series data as well.  
 

2.3. Identify Linear Pattern 
2.3.1 Correlation scatter matrix and Correlation Matrix 
The correlation scatter matrix is used to intuitively display the correlation of each pair of 

usage parameters and the correlation matrix is used to numerically show their correlation 
coefficients which are measured by Pearson Correlation Coefficient (Molugaram & Rao, 2017b).  

The Pearson correlation coefficient is denoted by  
 

    (3) 
 

where n is the number of samples, xi, yi are the single samples indexed with i, x and y  are the 
sample means. 

Pearson correlation r is between -1 and 1. The closer the value of  r gets to zero, the greater 
the variation the data points are around the line of the best fit. The absolute value of  r represents 
the strength of correlation. The sign of r presents the relevant direction of these variables. The 
positive correlation shows that the pair of variables has the same direction. In contrast, negative one 
presents the opposite directions of variables. 

The correlation matrix exhibits correlation coefficient between pairs of resource usage 
parameters as well as its autocorrelation coefficient of MapReduce applications.  
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2.3.2 Feasibility of Linear Regression Model  
The variation of the base error rate is used to discriminate the feasibility of multiple linear 

regression models. The Z-score (standardized coefficient) is a statistical measure to test the effect of 
dropping that variable from the model. It is used to test the hypothesis of a particular coefficient 
j=0. The Z-score(Warner, 2016) is denoted by 

 

          (4) 
 

where SE denotes standard error of estimate coefficient . Under the null hypothesis test of j=0, 
zj is distributed as a t distribution with n-m-1 degrees of freedom (Molugaram & Rao, 2017a), 
where m is the number of predictors in the model, n is the number of observations, a large absolute 
value of zj provides evidence to reject this null hypothesis. The absolute value of Z-score greater 
than 2 refers to approximately the significant level at 5%. 

The F statistic (Molugaram & Rao, 2017a) is used to test the significance of a group of 
coefficients simultaneously. It measures the change of residual sum of squares (RSS) as dropping a 
group of coefficients simultaneously in the bigger model. Under the null hypothesis, if the smaller 
model is correct, the F statistic will be distributed as a F distribution. Based on the obtained F 
statistic, the corresponding p-value (significant level is 0.05) can be calculated. The p-value larger 
than 0.05 proves that the dropping of insignificant variables would not impact the fit performance of 
the model. 

Based on the given significant variables (the absolute value of Z-score larger than 2), the 

 is used to show the improvement of prediction performance after using the 

linear fitting. The  is denoted by 
 

              (5) 

The  is the test mean squared error of the true value and the prediction value of the 

response. In contrast, the  is the mean squared error of the true test value of response 
and the mean training value of response and is denoted by 
 

              (6) 
 

where n is the length of test data,  is the  true value of the response, is the mean 
training value of the response. 

Therefore, the positively higher improvement of  provides strong evidence to 
prove the feasibility of the multiple linear regression methods. 
 

2.4. Modeling on Resource Usage Parameters 
 
2.4.1. Multiple Linear Regression Methods 
Multiple Linear Regression (Ross, 2017a) is used to model resource usage parameter on 

associated historical usage parameters as well as other usage parameters. The ordinary least squares 
approach (Linton, 2017) is used to estimate the coefficient of a model. The estimated coefficients of 
the model would be able to reveal the quantitative relationships among these usage parameters.  
Multiple linear regression model takes the form: 
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         (7) 

where  represents the jth predictor and   quantifies the association between that predictor and 

the response.  is a constant and represents the average effect on Y of one units’ increase in , 
holding all other predictors fixed.  

The coefficients of model  0, 1, ..., p are unknown and must be estimated. The estimated 

regression coefficients are denoted by , ,  and would be obtained by minimizing 
Residual Square Sum (RSS) of regression model.  

      (8) 
According to given estimated coefficients, prediction can be conducted by using following formula 
 

                        (9) 
Theoretically, the Least Square Regression claims that if: 

  ,   ,                (10) 
 

then the estimate coefficient vector  will be calculated as (Rizvandi, Nabavi, & Hessabi, 2005) by 
minimizing above RSS: 

                           (11) 
where (.)T denotes a transpose matrix. The vector  denotes the set of estimated coefficient of 
regression model. 
 

2.4.2. Multicollinearity problem 
The variance inflation factor (VIF) is used to detect multicollinearity (Yu, Jiang, & Land, 

2015) (also collinearity). The elimination of multicollinearity is able to make sure of the 
independence assumption of predictors for multiple linear regression model. Based on (Gareth 
James, Daniela Witten, 2013), the VIF is denoted by 

 

                     (12) 
 

where  is the R2 from a regression of  onto all of the other predictors. If 

 is close to one, then collinearity is present, and the corresponding VIF will 
be a larger one. The smallest VIF value is 1 and indicates the complete absence of collinearity. As a 
rule of thumb, a VIF of 5 or 10 and above indicates a multicollinearity problem(O’Brien, 2007). In 
our case, the threshold of VIF is 10. If the VIF value of predictor variable doesn’t exceed 10, the 
model will keep it. Otherwise, it has to be dropped. 

Note that the process of eliminating multicollinearity keeps running until no VIF larger than 
10. Meanwhile, non-regressive term is preferentially eliminated.  
 

2.4.3. Best-Subset Selection 
Best subset selection is used to explore the model with the smallest residual sum of squares 

from those with the subset of size k, for each k {0, 1, 2, ... p}, p is the maximum number of 
predictors. Firstly, the models with the smallest residual sum of squares (RSS) are chosen from all 
possible various model groups with the fixed subset of size k, for each k {0, 1, 2, ... p}. Each 
model group has same model size (the number of predictors). Secondly, ten-fold cross-validation 
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(Witten, Frank, Hall, & Pal, 2017) is used to calculate Test MSE (Mean Squared Error) 
(Theodoridis, 2015) for the given models in each model group.  

The one-standard-error rule (Hastie, Tibshirani, & Friedman, 2009) is used to choose the 
simplest model. The standard error (SE) of a statistic (most commonly the mean) is the standard 
deviation of its sampling distribution (Everitt & Skrondal, 2010). The standard error of the mean 

( ) (Theodoridis, 2015) is denoted by 
 

                      (13) 
 

where  is the sample TestMSE standard deviation, k is the size (number of TestMSE) of the 
sample folds.  
 

2.4.4. Choose Interaction Term 
In statistics, an interaction (Usset, Staicu, & Maity, 2016) may arise when considering the 

relationship between three or more variables and describes a situation in which the simultaneous 
influence of two variables on a third is not additive. The significant increase for R2(Ross, 2017b) 
and decrease for residual standard error(RSE) (Usset et al., 2016) is used to determine the join of an 
interaction term for the regression model. The threshold of increased percentage of R2 is set as 3%. 
 

2.4.5. Estimate coefficients and statistical metrics 
To obtain credibly estimated coefficients and statistical metrics, their means are calculated 

by performing regression calculation for ten times on different resampled training data instead of 
simply fitting on all training data. The means are closer to the true value than estimates on 
regression calculation on full training data.  
 

2.4.6. Validate Independence of Residual 
One of the most important assumptions of the linear regression model is that the error terms, 

, are uncorrelated. If the error terms are uncorrelated, residual of the model is random 
and provides the evidence for the unbiased estimates for the true standard errors. The 
autocorrelation plot of residual is used to check if the hypothesis is valid.  
 

3. Methodology of Stable Modeling 
The stable modeling takes the stability of two metrics into account: estimated coefficient 

and statistical measures (R2 and residual standard error) of the given regression model. The 
minimum sampling time of these two stable metrics is used to represent an essential time for stable 
modeling. 
 

3.1. Experimental Design 
This experiment was designed to repeatedly execute the regression calculation procedure 

until the full training data is run out. The size of training data is 50 and increases stepwise by 50 for 
each training model until data is run out. The total number of modeling depends on the total amount 
of observations divided by 50. The estimated coefficients and the statistic metrics for each modeling 
were calculated and recorded. Based on these records, the corresponding sensitivity degree of error 
rate is calculated to decide the minimum sampling time for stable modeling. 
 

3.2. Analyze the stability of estimate coefficient 
The minimum sampling time of stable estimated coefficients of a regression model is 

revealed. The stable condition of estimate coefficients is the value does not change over time. But in 
real MapReduce environment, the constant estimated coefficients are almost impossible. 
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Alternatively, the estimate coefficients might fluctuate and gradually converge to the stable state. 
Theoretically, it will reach a stable state in an infinite time.  

The error rate of a coefficient is used to represent the sensitivity degree. The threshold of 
sensitivity degree is set to 0.1. It means that the estimated coefficients are arriving stability when 
the percentage of the difference between real coefficient and estimate coefficient over real 
coefficient less than 10%. The Error rate of Coefficient is denoted by 
 

 (14) 
 
where the molecular is the absolute value of the difference between estimates coefficients and 
approximately true coefficients, the denominator is the absolute value of approximately true 
coefficients. Note that the threshold of sensitivity degree is able to be a different value according to 
the requirement of robustness. 
 

3.3. Analyze the stability of Fit Quality of Regression model 
The minimum sampling time of residual standard error and R2 is used to represent the 

stability of fit goodness of regression models. Likewise, the threshold of sensitivity degree is 
configured as 0.1. It can be adjusted according to the requirements of real situation. The smaller 
threshold needs more sampling time while larger one needs less. The corresponding Error rate of 
RSE and R2 are denoted by 

               (15) 
 

                  (16) 

The similar method with the analysis of stability of estimate coefficient is used to get the 
minimum stable sampling time of statistical metrics.  
 

4. Result 
 
4.1. Experimental environment 
The basic experimental setting is as follows: 

 Bare metal server with an Intel CoreTM i5-4670 CPU 3.40GHz 4 cores, 16GB Kingston 
HyperX Black DDR3 1600MHz RAM and 250GB 7200RPM hard drive. 

 Ubuntu server 16.04.3 LTS, kernel 4.4.0-62-generic has been used to the top of the physical 
hardware. Automatic update is abandoned. 

 Hadoop single node mode is installed on the top of Ubuntu server. The node runs default 
configuration of Hadoop version 2.7.3 and MapReduce v2, except the block size is set to 
512MB. 

 
4.2. Remove Non-randomness 
Figure 1 presents the autocorrelation plot and partial autocorrelation plot of each resource 

usage parameter of Terasort application.  The purpose is to check and remove non-randomness. If 
non-randomness existed, the lag values with the largest partial autocorrelation are chosen to remove 
non-randomness. 
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        ( CPU usage)          (Memory usage) 

          (Read rate)         (Write rate) 

 
Figure 1. ACF and PACF plot of TeraSort application 

 
In Figure 1, the autocorrelation plots of all resource usage parameters reveal non-

randomness because of the corresponding autocorrelations, denoted by the circle, violate the dashed 
lines (95% confidence boundary) and are statistically significant for lags up to 100.  The filled 
triangle point-up in partial autocorrelation plots marks the largest partial autocorrelation of usage 
parameters as well as the corresponding lag number.  

The largest partial autocorrelation of CPU usage is 0.692 and the corresponding lag number 
is 1. It shows the highly positive relevance between the CPU usage and its lag 1 values. This result 
indicates CPU usage is non-random and the main propagating factor is lag 1 values. The same can 
be observed with memory usage, read rate and write rate. The largest partial autocorrelations and 
the corresponding lag numbers are listed in Table 1. 

According to the lag number in Table 1, the corresponding lag series is added to the 
predicted equation to remove the non-randomness of associated time series data. 
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Table 1. The largest partial autocorrelations and the corresponding lag numbers of applications 

CPU usage Memory usage Read rate Write rate 
Application 

name PACF 
Lag 

number 
PACF 

Lag 
number 

PACF 
Lag 

number 
PACF 

Lag 
number 

WordCount 0.624 1 0.996 1 0.605 1 0.391 5 
WordMean 0.565 3 0.996 1 0.739 1 0.336 5 

WordMedian 0.448 6 0.996 1 0.731 1 0.380 5 
TeraSort 0.692 1 0.992 1 0.893 1 0.834 1 

Grep 0.742 1 0.996 1 0.802 1 0.261 5 
TeraGen 0.387 1 0.990 1 0.478 2 0.711 1 

Pi 0.983 1 0.932 1 0.732 1 0.307 5 
 

4.3. Feasible Analysis of Linear Regression Model 
 
4.3.1. Correlation Matrix 
The Pearson product-moment correlation coefficient was used to quantify the strength of a 

linear relationship between resource usage parameters. We explored and analysed the significant 
linear strength between these correlation coefficients of each MapReduce application and chose the 
Terasort application to describe substantial correlation characteristics. Table 2 shows the correlation 
matrix of collected data of the Terasort application. 
 

Table 2. Correlation matrix of Terasort application 
 CPU MEM RIO WIO Prv_cpu Prv_mem Prv_rio 
MEM -0.089       

RIO 0.046 -0.269      
WIO 0.048 -0.073 -0.495     

Prv_cpu 0.692 -0.086 0.026 0.076    
Prv_mem -0.092 0.995 -0.272 -0.072 -0.089   

Prv_rio 0.039 -0.262 0.893 -0.396 0.046 0.267  
Prv_wio 0.051 -0.074 -0.413 0.834 0.048 -0.072 -0.495 

 
Table 2 shows the correlation coefficients between resource usage parameters including the 

corresponding lag series of the Terasort application. All the correlations between usage parameters 
and their corresponding lag series show the strong positive linear relevance. The range is between 
0.692 and 0.995. Another significant correlation comes up between read rate and write rate and it 
shows the moderate negative linear relevance (-0.495). Meanwhile, the correlations between read 
rate and lagged write rate and between write rate and lagged read rate both show the similar results 
with the correlation between read rate and write rate. The results are -0.413 and -0.396. The weak 
negative relevance is present between memory usage and read rate. The remaining correlations all 
exhibit extremely weak relationships or even no relationship. 
 

4.3.2. Performance Improvement  
The improvement of the base error rate is used to decide the feasibility of linear regression 

model. The higher this percentage, the bigger the feasibility. Table 3 show the improved percentage 
of the base error rate of each MapReduce application. 

In Table 3, the most significant improvement on the base error rate comes up on the linear 
models of memory usage as response and are all larger than 87%. The linear models of read rate as 
the response also have good performance on improving the base error rate. For the linear models of 
CPU usage as the response, the Teragen application shows a weak decline (-10%) on base rate error 
and others show positive improvements. Pi application (-3%) using the model of write rate as the 
response also exhibits a weak decline (-3%). The remaining linear models using write rate as the 
response improve the corresponding base error rates. The results prove these linear models are the 
possible adequate ones.  
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Table 3. Improvement of base error rate of each application 
Improve_error_rate 

Name of 
application CPU usage 

as response 
Memory usage 

as response 
Read rate as 

response 
Write rate 
as response 

WordCount 52% 99.5% 25% 23% 
WordMean 10% 100% 99% 98% 
WordMedian 25% 99% 34% 13% 
TeraSort 80% 98% 91% 86% 
Grep 50% 100% 98% 99% 
TeraGen -10% 99.6% 42% 52% 
Pi 96% 87% 41% -3% 

 
4.4. Multiple Linear Regression Model 
Table 4 shows the multiple linear regression models and the corresponding residual standard 

error (RSE) and R square (R2) of each MapReduce application.  
 

Table 4. List of regression models 
Name of 

application Regression Model RSE R2 
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 7 96.8% 
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 0.13 54.2% 
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In Table 4, the estimated coefficient shows the strength of linear dependency and its sign 
represents the dependent direction. Except for the dependency between response and the previous 
usage parameter itself, others dependency exposes the resource bottleneck of the corresponding 
application in Hadoop MapReduce environment. Meanwhile, according to the estimated coefficient, 
the optimized suggestion could be given for improving associated usage parameters.  For example, 

read rate, denoted by RIO, in the model  of Wordcount 
application has an estimated coefficient 0.4. It means that the average CPU usage might increase 
4% when the average read rate increase 10MB/S, as well as the corresponding previous CPU usage 
keeps the fixed value.  But in reality, the average of the previous CPU usage increases with 
approximately 4%. Thus, the real increase of the means of CPU usage will be 6.4% according to the 

equation  and the corresponding resource bottleneck is the low read rate. 
From the cloud operators side, the effective improvement of CPU usage can be expected when the 
throughput of the disk drive is able to be increased. In the application developers’ perspective, the 
read rate can be improved by optimizing programming of the corresponding application.   

The regression models of applications with similar features showed significantly similar 
form and dependent strength, such as Wordcount and Wordmean, while others exhibited differently. 
The RSE and R2 are used to describe the fit quality of models. The smaller RSE and the larger R2 
are the desirable statistical metrics.  
 

4.5. Validation of autocorrelation of error terms 
For the linear regression model, one of the most important assumptions is the error terms, 

, are uncorrelated. If the error term is uncorrelated, it proves that there exists strong 
randomness in residuals of the model and provides the evidence for the unbiased estimate for the 
true standard error. The autocorrelation plot is used to check this assumption. Figure 2 shows the 
autocorrelation plot of residuals of regression models of TeraSort application. 

In Figure 2, the horizontal axis represents lag time and the vertical axis indicates the 
autocorrelation between residual at time t and residual at other lag time. At lag 0, autocorrelation is 
always equal to 1 and represents time series itself. Most of the autocorrelation at other lag time fall 
into the 95% confidence interval, only few of them violate the dashed line. Such a shape of ACF 
plot proves that residuals are uncorrelated and respects to the independent assumption of the linear 
regression model residuals. 
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Figure 2. ACF plot of Residuals of Regression Model of Terasort 

 
4.6. Analysis of the minimum sampling time of stable modeling 
 

4.6.1 Analysis of stability of estimate coefficient 
Figure 3 shows estimate coefficients distribution of model on read rate as the response of 

Terasort application. The filled triangle point-up indicates the position of the minimum stable 
sampling time for the corresponding estimate coefficients as well as the number above it shows the 
exact position value. The dashed line represents the average estimated coefficient of the regression 
model. 
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Figure 3. Estimate coefficients distribution of model on read rate as response of Terasort application 
 
Note that each estimated coefficient converges to dashed line gradually and shows the 

different minimum sampling times as the training data size increases. Different estimated 
coefficients perform the various minimum sampling time. For stable modeling, the largest sampling 
time of these coefficients is used to be the minimum sampling time of Terasort application. The 
minimum sampling time here is 13300 and it belongs to intercept coefficient . It is found that the 
bigger difference between estimated coefficients and the average estimated coefficients is exposed 
as the training data size approximately less than 6000. The result indicates that the adequate training 
data is needed for training the stable model. Therefore, the minimum sampling time is essential for 
the model used to reveal the internal relationship between resource usage parameters. 
 

4.6.2. Analysis of stability of Fit Quality of Regression model 
Figure 4 shows the statistical metrics distribution of regression model on read rate as the 

response of Terasort application. The filled triangle point-up indicates the minimum stable sampling 
time for statistical metrics. The top-half of figure 4 shows the residual standard error (RSE) 
distribution as training data size increase. The remaining half is for the distribution of R2. 
 

 
 

Figure 4. Statistical Metrics distribution of model on RIO as response of Terasort application 
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The minimum sampling time of residual standard error converges to stability slowly than R2 
for stable modeling. The sampling time is 6850 and 100, respectively. Comparing to the minimum 
sampling time of estimated coefficients, the sampling times of statistical metrics are more less. 
Therefore, 13300 is used to be the minimum sampling time to ensure stable modeling. 
 

5. Analysis and Discussion 
 
5.1. The distribution of Estimate Coefficients and Statistical Metrics 
Figure 5 presents the strength of estimated coefficients of regression models of each 

application using bar plot. The height of a bar represents strength of each estimated coefficient as 
well as the pattern shows the corresponding usage parameter of regression model. The top-left panel 
of figure 5 displays the estimated coefficients distribution of the model with CPU usage as the 
response. The top-right panel, bottom-left panel, bottom-right refer to memory usage, read rate and 
write rate as the response, respectively.  
 

 
 

Figure 5. Coefficient Distribution of models of all applications 
 
In Figure 5, the positive dependency of different strength between each resource usage 

parameter and the corresponding previous usage parameter is exhibited for all MapReduce 
applications. It indicates that all current resource usage parameters are positively dependent on the 
previous values to some extent degree. Except for these common dependencies, there exist some 
special dependencies for different applications. 

On the top-left panel of Figure 5, CPU usage of Pi application shows the strongest positive 
dependency to lagged CPU usage, the Teragen application had the weakest positive dependency, 
and others exhibit the moderate positive dependency. Except for the dependency between CPU 
usage and lagged CPU usage, the Wordcount application exhibits moderate positive dependency 
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between CPU usage and read rate, as well as Wordmean application. Meanwhile, the Teragen 
application shows a weak negative relationship between CPU usage and memory usage.  

The top-right panel of figure 5 exhibits the dependent characteristics between memory usage 
and other usage parameters. Except for Pi application, others showed the extremely highly positive 
dependency of memory usage to lagged memory usage. Memory usage of Pi application has a 
weakly positive dependency to CPU usage except for a moderate dependency to lagged memory 
usage. Memory usage of Grep application exhibits an extremely weak dependency to lagged CPU 
usage. 

The dependent relationships between read rate and other usage parameters are displayed in 
the bottom-left panel of Figure 5. The dependency between read rate and previous read rate 
indicates that read rate most likely depends on the lagged read rate for each application. For 
Wordcount, Wordmean and Wordmedian applications, read rate is negative dependent to write rate. 
In other words, read rate is going to significantly decrease as write rate increases. Read rate of 
Terasort application exhibited the moderate negative relationship with write rate and the moderate 
positive relationship with lagged write rate. It implies that read rate is sensitive to the variation of 
write rate. 

The bottom-right panel of figure 5 exhibits the relationship between write rate and other 
usage parameters for each application. Terasort and Teragen applications have the highest estimated 
coefficients on lagged write rate. It is most likely due to their frequent write operations. The 
remaining applications just exhibit the weak relationship between write rate and lagged write rate. 
Write rate of Pi application also shows a weak positive relationship with lagged CPU usage. Write 
rate of Terasort application exhibits a strong negative relationship with read rate and positive 
relationship with lagged read rate. It means that write rate has a relationship with the variation 
between read rate and lagged read rate. Therefore, each MapReduce application has the various 
relationship among resource usage parameters.  

Figure 6 shows the fit quality of regression models. It is following:  
 

 
Figure 6. RSE and R2 of regression models of MapReduce applications 

 
The left panel and the right panel of figure 6 show the residual standard error (RSE) 

distribution and R2 distribution of each application. The good fit quality corresponds to a taller R2 
bar and a shorter RSE bar. The R2 almost 1 and small RSE show the best fit quality of the 
regression models on memory usage as the response. The overall higher RSE and lower R2 of 
regression models on CPU as the response show the worse quality of fitting goodness. The 
regression models on read rate as the response also show a moderate fitting quality. For the 
regression models on write rate as the response, Terasort application exhibits the best quality and 
Teragen application as well. Others show the worse fitting quality. The results show that the 
regression models on intensive usage parameters as response exhibit the good fitting quality.  
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5.2. Comparison of Minimum Sampling time for Estimated Coefficients and Statistical 
Metrics 
 
Figure 7 was used to show the distribution of the minimum sampling time of estimate 

coefficients for stable modeling for each application.  
 

 
Figure 7. Minimum sampling time of MapReduce applications on various response variable 

 
Figure 7 shows that Terasort application needs the largest sampling time to reach stable state 

while Pi application needs the smallest sampling time. The remaining applications need the similar 
minimum sampling time. Overall, the stable regression models on memory usage as response show 
the least need for sampling time. The results show that various applications have different minimum 
sampling time to get stable. The application which performs more read/write operations shows 
larger sampling time need. 

Figure 8 presents the minimum sampling time distribution of statistic metrics which ensures 
the stable modeling. Overall, the minimum sampling time of statistic metrics is smaller than 
sampling time of estimated coefficients. For different applications, a time-consuming application 
like Terasort needs the largest sampling time to tend to be stable. The Pi application shows the 
smallest minimum sampling time to reach stability. 
 

 
 

Figure 8. Minimum sample time of statistical metrics of MapReduce applications 
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The results show that the minimum sampling time of stable modeling in MapReduce 
environment is related to the features and the complexity degree of the algorithm of applications. 
Applications with similar features and complexity degree of algorithm always have similar 
minimum sampling time. The application of higher complexity degree and consumption of 
resources will need more sampling time to be stable. Therefore, the fixed sampling time is not 
always reliable.  
 

6. Conclusion and Future Works 
In this paper, we explored and dig the dependent characteristics of resource usage 

parameters, including CPU usage, memory usage, read rate and write rate. Based on the dig 
characteristics, we model the relationship of usage parameters using multiple linear regression 
methods for seven MapReduce applications. The results show that the regression model built by 
using such analytical approach is beneficial to cloud operators to discover the bottleneck resource of 
the cloud computing platform and to give reasonably optimized suggestion for MapReduce 
applications. Furthermore, in order to make sure of obtaining the stable relationship, we also 
investigated the minimum sampling time for each application. We exhibited the influence of 
sampling time for stable modeling and presented an effective approach to make the corresponding 
minimum sampling time. This approach effectively provided pieces of evidence against the 
empirical fixed sampling time for modeling MapReduce applications. In future, we will study the 
influence coming from the block size and scale of workload and explore the best configuration of 
related parameters for stable modeling. 
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