

45

Stable Modeling on Resource Usage Parameters of MapReduce Application

Yangyuan Li

Department of Networked Systems and Services, Budapest University of Technology and
Economics, Budapest, Hungary

H-1117, Magyar tudósok körútja 2, Budapest, Hungary

Department of Computer Science, Xi’an Siyuan University, China
710038, Xi’an, China
wlqsb@hotmail.com

Abstract
Currently, Hadoop MapReduce framework has been applied to many productive fields to

analyze big data. MapReduce applications based on the MapReduce programming model are used
to generate and process such huge data. Due to various computational purpose, MapReduce
applications have different resource requirements. For specific applications, the resource bottleneck
of the cloud computing platform must inevitably impact its executive performance. Therefore,
identification of the bottleneck about the allocated resource for MapReduce applications is crucially
needed from the viewpoint of either cloud operators or program developers. In this paper, we model
the relationship of resource usage parameters of MapReduce applications using multiple linear
regression methods and investigate the minimum sampling time for stable modeling. Based on the
analysis, we propose the approach which can be used to build stable performance model to expose
the bottleneck resource of Hadoop platform and give the effective optimization suggestion.

Keywords: MapReduce application; resource bottleneck; resource usage parameters;
multiple linear regression; stable modeling; minimum sampling time

1. Introduction
As a popular computation framework, the Apache Hadoop (Apache.org, 2017) has been

applied broadly to big data processing and analytic in many IT companies, such as Facebook, etc.
Map/Reduce (Vavilapalli et al., 2013) is a computational programming model of Hadoop for
processing huge amount data either in public clouds or in private clouds. Based on this
programming model, the developers can write their MapReduce applications for different big data
processing purposes, which may show various computation resource requirements. Though cloud
computing techniques (Geneva, 2012) claimed that commodity computers can offer the unlimited
resources over the internet, the over-provisioning or unbalanced-provisioning resource to
MapReduce application should be avoided. Therefore, the precise identification of the bottleneck
problem of allocated resource for MapReduce application is crucially needed from the viewpoint of
either cloud operators or developers.

Many efforts have been spent on the related studies. For example, L. Bautista Villalpando et
al. (Bautista Villalpando, April, & Abran, 2014) modeled the relationship between performance
measurements of big data application and the quality concepts of software engineering.
Subsequently, on the basis of Amdahl's law regression methods (Rodgers, n.d.), Issa, J A et al.
(Issa, 2015) proposed an estimation model to estimate performance and total processing time versus
different input sizes for a given processor architecture. He intended to explore the relationship
between processing time and input size of data. Glushkova. et al.(Glushkova, Jovanovic, & Abelló,
2017) built a new performance model for Hadoop 2.x, which use the queuing network model to
capture the execution flow of a MapReduce job and take architectural changes into account. These
models proposed above only concerned the performance analysis with the given resource and did
not mention the allocated resource declining the performance of Hadoop platform. A resource reuse
optimization mechanism for MapReduce short jobs was developed by Shi. et al. (Shi et al., 2016),
which effectively shortened the execution time of these jobs and significantly improved the
resource utilization of cluster. Nghiem. et al. (Nghiem & Figueira, 2016) put forward a novel
algorithm for optimal resource provisioning to get the exact amount of task resources, which

BRAIN – Broad Research in Artificial Intelligence and Neuroscience, Volume 9, Issue 2 (May, 2018), ISSN 2067-3957

 46

represented the best trade-off point between performance and energy efficiency for any MapReduce
job running on Hadoop. According to the real social network data, Bakratsas. et al.(Bakratsas,
Basaras, Katsaros, & Tassiulas, 2017) evaluated the performance of three algorithms when using
solid state drives and hard disk drives as underlying storage for Hadoop’s MapReduce. However,
these papers did not mention the bottleneck resource of Hadoop platform when running an unknown
application. As a result, the performance analysis model for exploring the bottleneck resource might
be beneficial to gaining better resource provisioning for cloud operators as well as designing high-
performance MapReduce application for developers.

We build the regression model for a suite of typical MapReduce benchmark applications,
including Wordcount, Wordmean, Wordmedian, Grep, Pi, Teragen, and Terasort. The first four
applications respectively calculate the number of occurrence of words, the average length of words,
the median length of words, and the matches to a regex in a text file. The Pi application uses the
quasi-Monte Carlo methods(Levy, 2016) to estimate the value of the pi number. The Teragen
application is used to generate rows of data to a file. Lastly, the Terasort application sorts the
generated data from Teragen. All these benchmark applications require various resource intensive
requirements. By applying the multiple linear regression methods(Ross, 2017a), the present study
models relationships amongst resource usage parameters as well as significantly lagged usage
parameters. The obtained model shows the resource bottleneck of MapReduce applications on
Hadoop platform. Furthermore, the sampling time for each MapReduce application has a substantial
impact on the fit quality of the regression model. The minimum sampling time of each application
is the essential condition for stable modeling. Thus, the minimum sampling time of each
MapReduce application is also investigated. To the best of our knowledge, this is the first attempt to
use multiple linear regression methods to model the relationship of resource usage parameters as
well as to investigate the minimum sampling time for Mapreduce applications. This study about
exploring the bottleneck resource of cloud computing platform by building the stable performance
model for applications is the gap in this era.

In this work, our contributions are:

 We model the relationship of resource usage parameters of several Mapreduce

applications using multiple linear regression methods.
 We investigate the minimum sampling time for stable modeling on resource usage

parameters for Mapreduce application.
 We present an approach to explore the bottleneck resource of Hadoop cloud computation

platform.

This body of the paper is organized as follows. Section 2 presents the methodology of modeling
on resource usage parameters. In section 3, we explain the methodology of obtaining the minimum
sampling time for stable modeling. The detailed results are presented in section 4. Section 5 shows the
discussion and analysis of results. Conclusion and future direction are wrapped into the last section.

2. Methodology of Modeling on Resource Usage Parameters

2.1. Data collection
The workloads for those applications, including Wordcount, Wordmean, Wordmedian,

Grep, are generated with the use of hdfswriter.jar (written in java). The corresponding workload is
100 GB text file. The workload of Terasort is 60 GB data generated from Teragen. The usage
parameters of Teragen are captured when it generates 180 GB data. Pi is performed with 2000 map
tasks in 10000000 times.

Collectl utility is used to measure the total percentage of time spent of CPU processing job,
the total memory usage, the total KB read/second from hard disk and the total KB write/second to
hard disk of MapReduce applications with time resolution 1 s. Note that Collectl is a lightweight
application that only occupies extremely few resources to gather time series data.

Y. Li - Stable Modeling on Resource Usage Parameters of MapReduce Application

 47

2.2. Explore Non-randomness
The collected data in this work are time series data. Empirically, the autoregressive pattern

always exists in time series data. Extracting autoregressive term is typically used to eliminate the
autoregressive pattern of data. The autocorrelation function (Bhattacharya & Burman, 2016) is used
to explore the non-randomness of each resource usage parameter and the partial autocorrelation
function (Bhattacharya & Burman, 2016) is applied to determine the number of the significant
autoregressive term. A quarter of the amount of observations is used to estimate autocorrelation and
partial autocorrelation according to Box and Jenkins (Box, Jenkins, & Reinsel, 1994).

Let xt denote the value of a time series at time instant t. The autocorrelation between xt and
xt+k is given by autocorrelation coefficient, denoted by k, for k={1, 2, 3, ..., n}.

 (1)

The autocorrelation plot (ACF plot) (Box et al., 1994) shows the autocorrelation coefficients
of a time series data at various lags. If at least one autocorrelation is significantly non-zero, it gives
a strong evidence of non-randomness.

The partial autocorrelation between xt and xt+k is defined by the conditional autocorrelation
coefficient and is conditional on xt-1, ..., xt+k-1, denoted by ak, for k={1, 2, 3, ..., n}.

 (2)

The partial autocorrelation plot (PACF plot) (Box et al., 1994) plots the partial
autocorrelation coefficients at various lags. When non-randomness of time series data is significant,
PACF plot is used to find the number of the autoregressive terms. In this work, the largest PACF
coefficient is used to identify the number of the autoregressive term.

The basic assumption of drawing ACF plot and PACF plot is that time series data is
stationary. The Ljung–Box Q test(Shams, Haji, Salman, Abdali, & Alsaffar, 2016) is used to
identify the stationary of time series data as well.

2.3. Identify Linear Pattern
2.3.1 Correlation scatter matrix and Correlation Matrix
The correlation scatter matrix is used to intuitively display the correlation of each pair of

usage parameters and the correlation matrix is used to numerically show their correlation
coefficients which are measured by Pearson Correlation Coefficient (Molugaram & Rao, 2017b).

The Pearson correlation coefficient is denoted by

 (3)

where n is the number of samples, xi, yi are the single samples indexed with i, x and y are the
sample means.

Pearson correlation r is between -1 and 1. The closer the value of r gets to zero, the greater
the variation the data points are around the line of the best fit. The absolute value of r represents
the strength of correlation. The sign of r presents the relevant direction of these variables. The
positive correlation shows that the pair of variables has the same direction. In contrast, negative one
presents the opposite directions of variables.

The correlation matrix exhibits correlation coefficient between pairs of resource usage
parameters as well as its autocorrelation coefficient of MapReduce applications.

BRAIN – Broad Research in Artificial Intelligence and Neuroscience, Volume 9, Issue 2 (May, 2018), ISSN 2067-3957

 48

2.3.2 Feasibility of Linear Regression Model
The variation of the base error rate is used to discriminate the feasibility of multiple linear

regression models. The Z-score (standardized coefficient) is a statistical measure to test the effect of
dropping that variable from the model. It is used to test the hypothesis of a particular coefficient
j=0. The Z-score(Warner, 2016) is denoted by

 (4)

where SE denotes standard error of estimate coefficient . Under the null hypothesis test of j=0,
zj is distributed as a t distribution with n-m-1 degrees of freedom (Molugaram & Rao, 2017a),
where m is the number of predictors in the model, n is the number of observations, a large absolute
value of zj provides evidence to reject this null hypothesis. The absolute value of Z-score greater
than 2 refers to approximately the significant level at 5%.

The F statistic (Molugaram & Rao, 2017a) is used to test the significance of a group of
coefficients simultaneously. It measures the change of residual sum of squares (RSS) as dropping a
group of coefficients simultaneously in the bigger model. Under the null hypothesis, if the smaller
model is correct, the F statistic will be distributed as a F distribution. Based on the obtained F
statistic, the corresponding p-value (significant level is 0.05) can be calculated. The p-value larger
than 0.05 proves that the dropping of insignificant variables would not impact the fit performance of
the model.

Based on the given significant variables (the absolute value of Z-score larger than 2), the

 is used to show the improvement of prediction performance after using the

linear fitting. The is denoted by

 (5)

The is the test mean squared error of the true value and the prediction value of the

response. In contrast, the is the mean squared error of the true test value of response
and the mean training value of response and is denoted by

 (6)

where n is the length of test data, is the true value of the response, is the mean
training value of the response.

Therefore, the positively higher improvement of provides strong evidence to
prove the feasibility of the multiple linear regression methods.

2.4. Modeling on Resource Usage Parameters

2.4.1. Multiple Linear Regression Methods
Multiple Linear Regression (Ross, 2017a) is used to model resource usage parameter on

associated historical usage parameters as well as other usage parameters. The ordinary least squares
approach (Linton, 2017) is used to estimate the coefficient of a model. The estimated coefficients of
the model would be able to reveal the quantitative relationships among these usage parameters.
Multiple linear regression model takes the form:

Y. Li - Stable Modeling on Resource Usage Parameters of MapReduce Application

 49

 (7)

where represents the jth predictor and quantifies the association between that predictor and

the response. is a constant and represents the average effect on Y of one units’ increase in ,
holding all other predictors fixed.

The coefficients of model 0, 1, ..., p are unknown and must be estimated. The estimated

regression coefficients are denoted by , , and would be obtained by minimizing
Residual Square Sum (RSS) of regression model.

 (8)
According to given estimated coefficients, prediction can be conducted by using following formula

 (9)
Theoretically, the Least Square Regression claims that if:

 , , (10)

then the estimate coefficient vector  will be calculated as (Rizvandi, Nabavi, & Hessabi, 2005) by
minimizing above RSS:

 (11)
where (.)T denotes a transpose matrix. The vector  denotes the set of estimated coefficient of
regression model.

2.4.2. Multicollinearity problem
The variance inflation factor (VIF) is used to detect multicollinearity (Yu, Jiang, & Land,

2015) (also collinearity). The elimination of multicollinearity is able to make sure of the
independence assumption of predictors for multiple linear regression model. Based on (Gareth
James, Daniela Witten, 2013), the VIF is denoted by

 (12)

where is the R2 from a regression of onto all of the other predictors. If

 is close to one, then collinearity is present, and the corresponding VIF will
be a larger one. The smallest VIF value is 1 and indicates the complete absence of collinearity. As a
rule of thumb, a VIF of 5 or 10 and above indicates a multicollinearity problem(O’Brien, 2007). In
our case, the threshold of VIF is 10. If the VIF value of predictor variable doesn’t exceed 10, the
model will keep it. Otherwise, it has to be dropped.

Note that the process of eliminating multicollinearity keeps running until no VIF larger than
10. Meanwhile, non-regressive term is preferentially eliminated.

2.4.3. Best-Subset Selection
Best subset selection is used to explore the model with the smallest residual sum of squares

from those with the subset of size k, for each k {0, 1, 2, ... p}, p is the maximum number of
predictors. Firstly, the models with the smallest residual sum of squares (RSS) are chosen from all
possible various model groups with the fixed subset of size k, for each k {0, 1, 2, ... p}. Each
model group has same model size (the number of predictors). Secondly, ten-fold cross-validation

BRAIN – Broad Research in Artificial Intelligence and Neuroscience, Volume 9, Issue 2 (May, 2018), ISSN 2067-3957

 50

(Witten, Frank, Hall, & Pal, 2017) is used to calculate Test MSE (Mean Squared Error)
(Theodoridis, 2015) for the given models in each model group.

The one-standard-error rule (Hastie, Tibshirani, & Friedman, 2009) is used to choose the
simplest model. The standard error (SE) of a statistic (most commonly the mean) is the standard
deviation of its sampling distribution (Everitt & Skrondal, 2010). The standard error of the mean

() (Theodoridis, 2015) is denoted by

 (13)

where is the sample TestMSE standard deviation, k is the size (number of TestMSE) of the
sample folds.

2.4.4. Choose Interaction Term
In statistics, an interaction (Usset, Staicu, & Maity, 2016) may arise when considering the

relationship between three or more variables and describes a situation in which the simultaneous
influence of two variables on a third is not additive. The significant increase for R2(Ross, 2017b)
and decrease for residual standard error(RSE) (Usset et al., 2016) is used to determine the join of an
interaction term for the regression model. The threshold of increased percentage of R2 is set as 3%.

2.4.5. Estimate coefficients and statistical metrics
To obtain credibly estimated coefficients and statistical metrics, their means are calculated

by performing regression calculation for ten times on different resampled training data instead of
simply fitting on all training data. The means are closer to the true value than estimates on
regression calculation on full training data.

2.4.6. Validate Independence of Residual
One of the most important assumptions of the linear regression model is that the error terms,

, are uncorrelated. If the error terms are uncorrelated, residual of the model is random
and provides the evidence for the unbiased estimates for the true standard errors. The
autocorrelation plot of residual is used to check if the hypothesis is valid.

3. Methodology of Stable Modeling
The stable modeling takes the stability of two metrics into account: estimated coefficient

and statistical measures (R2 and residual standard error) of the given regression model. The
minimum sampling time of these two stable metrics is used to represent an essential time for stable
modeling.

3.1. Experimental Design
This experiment was designed to repeatedly execute the regression calculation procedure

until the full training data is run out. The size of training data is 50 and increases stepwise by 50 for
each training model until data is run out. The total number of modeling depends on the total amount
of observations divided by 50. The estimated coefficients and the statistic metrics for each modeling
were calculated and recorded. Based on these records, the corresponding sensitivity degree of error
rate is calculated to decide the minimum sampling time for stable modeling.

3.2. Analyze the stability of estimate coefficient
The minimum sampling time of stable estimated coefficients of a regression model is

revealed. The stable condition of estimate coefficients is the value does not change over time. But in
real MapReduce environment, the constant estimated coefficients are almost impossible.

Y. Li - Stable Modeling on Resource Usage Parameters of MapReduce Application

 51

Alternatively, the estimate coefficients might fluctuate and gradually converge to the stable state.
Theoretically, it will reach a stable state in an infinite time.

The error rate of a coefficient is used to represent the sensitivity degree. The threshold of
sensitivity degree is set to 0.1. It means that the estimated coefficients are arriving stability when
the percentage of the difference between real coefficient and estimate coefficient over real
coefficient less than 10%. The Error rate of Coefficient is denoted by

 (14)

where the molecular is the absolute value of the difference between estimates coefficients and
approximately true coefficients, the denominator is the absolute value of approximately true
coefficients. Note that the threshold of sensitivity degree is able to be a different value according to
the requirement of robustness.

3.3. Analyze the stability of Fit Quality of Regression model
The minimum sampling time of residual standard error and R2 is used to represent the

stability of fit goodness of regression models. Likewise, the threshold of sensitivity degree is
configured as 0.1. It can be adjusted according to the requirements of real situation. The smaller
threshold needs more sampling time while larger one needs less. The corresponding Error rate of
RSE and R2 are denoted by

 (15)

 (16)

The similar method with the analysis of stability of estimate coefficient is used to get the
minimum stable sampling time of statistical metrics.

4. Result

4.1. Experimental environment
The basic experimental setting is as follows:

 Bare metal server with an Intel CoreTM i5-4670 CPU 3.40GHz 4 cores, 16GB Kingston
HyperX Black DDR3 1600MHz RAM and 250GB 7200RPM hard drive.

 Ubuntu server 16.04.3 LTS, kernel 4.4.0-62-generic has been used to the top of the physical
hardware. Automatic update is abandoned.

 Hadoop single node mode is installed on the top of Ubuntu server. The node runs default
configuration of Hadoop version 2.7.3 and MapReduce v2, except the block size is set to
512MB.

4.2. Remove Non-randomness
Figure 1 presents the autocorrelation plot and partial autocorrelation plot of each resource

usage parameter of Terasort application. The purpose is to check and remove non-randomness. If
non-randomness existed, the lag values with the largest partial autocorrelation are chosen to remove
non-randomness.

BRAIN – Broad Research in Artificial Intelligence and Neuroscience, Volume 9, Issue 2 (May, 2018), ISSN 2067-3957

 52

 (CPU usage) (Memory usage)

 (Read rate) (Write rate)

Figure 1. ACF and PACF plot of TeraSort application

In Figure 1, the autocorrelation plots of all resource usage parameters reveal non-

randomness because of the corresponding autocorrelations, denoted by the circle, violate the dashed
lines (95% confidence boundary) and are statistically significant for lags up to 100. The filled
triangle point-up in partial autocorrelation plots marks the largest partial autocorrelation of usage
parameters as well as the corresponding lag number.

The largest partial autocorrelation of CPU usage is 0.692 and the corresponding lag number
is 1. It shows the highly positive relevance between the CPU usage and its lag 1 values. This result
indicates CPU usage is non-random and the main propagating factor is lag 1 values. The same can
be observed with memory usage, read rate and write rate. The largest partial autocorrelations and
the corresponding lag numbers are listed in Table 1.

According to the lag number in Table 1, the corresponding lag series is added to the
predicted equation to remove the non-randomness of associated time series data.

Y. Li - Stable Modeling on Resource Usage Parameters of MapReduce Application

 53

Table 1. The largest partial autocorrelations and the corresponding lag numbers of applications

CPU usage Memory usage Read rate Write rate
Application

name PACF
Lag

number
PACF

Lag
number

PACF
Lag

number
PACF

Lag
number

WordCount 0.624 1 0.996 1 0.605 1 0.391 5
WordMean 0.565 3 0.996 1 0.739 1 0.336 5

WordMedian 0.448 6 0.996 1 0.731 1 0.380 5
TeraSort 0.692 1 0.992 1 0.893 1 0.834 1

Grep 0.742 1 0.996 1 0.802 1 0.261 5
TeraGen 0.387 1 0.990 1 0.478 2 0.711 1

Pi 0.983 1 0.932 1 0.732 1 0.307 5

4.3. Feasible Analysis of Linear Regression Model

4.3.1. Correlation Matrix
The Pearson product-moment correlation coefficient was used to quantify the strength of a

linear relationship between resource usage parameters. We explored and analysed the significant
linear strength between these correlation coefficients of each MapReduce application and chose the
Terasort application to describe substantial correlation characteristics. Table 2 shows the correlation
matrix of collected data of the Terasort application.

Table 2. Correlation matrix of Terasort application
 CPU MEM RIO WIO Prv_cpu Prv_mem Prv_rio
MEM -0.089

RIO 0.046 -0.269
WIO 0.048 -0.073 -0.495

Prv_cpu 0.692 -0.086 0.026 0.076
Prv_mem -0.092 0.995 -0.272 -0.072 -0.089

Prv_rio 0.039 -0.262 0.893 -0.396 0.046 0.267
Prv_wio 0.051 -0.074 -0.413 0.834 0.048 -0.072 -0.495

Table 2 shows the correlation coefficients between resource usage parameters including the

corresponding lag series of the Terasort application. All the correlations between usage parameters
and their corresponding lag series show the strong positive linear relevance. The range is between
0.692 and 0.995. Another significant correlation comes up between read rate and write rate and it
shows the moderate negative linear relevance (-0.495). Meanwhile, the correlations between read
rate and lagged write rate and between write rate and lagged read rate both show the similar results
with the correlation between read rate and write rate. The results are -0.413 and -0.396. The weak
negative relevance is present between memory usage and read rate. The remaining correlations all
exhibit extremely weak relationships or even no relationship.

4.3.2. Performance Improvement
The improvement of the base error rate is used to decide the feasibility of linear regression

model. The higher this percentage, the bigger the feasibility. Table 3 show the improved percentage
of the base error rate of each MapReduce application.

In Table 3, the most significant improvement on the base error rate comes up on the linear
models of memory usage as response and are all larger than 87%. The linear models of read rate as
the response also have good performance on improving the base error rate. For the linear models of
CPU usage as the response, the Teragen application shows a weak decline (-10%) on base rate error
and others show positive improvements. Pi application (-3%) using the model of write rate as the
response also exhibits a weak decline (-3%). The remaining linear models using write rate as the
response improve the corresponding base error rates. The results prove these linear models are the
possible adequate ones.

BRAIN – Broad Research in Artificial Intelligence and Neuroscience, Volume 9, Issue 2 (May, 2018), ISSN 2067-3957

 54

Table 3. Improvement of base error rate of each application
Improve_error_rate

Name of
application CPU usage

as response
Memory usage

as response
Read rate as

response
Write rate
as response

WordCount 52% 99.5% 25% 23%
WordMean 10% 100% 99% 98%
WordMedian 25% 99% 34% 13%
TeraSort 80% 98% 91% 86%
Grep 50% 100% 98% 99%
TeraGen -10% 99.6% 42% 52%
Pi 96% 87% 41% -3%

4.4. Multiple Linear Regression Model
Table 4 shows the multiple linear regression models and the corresponding residual standard

error (RSE) and R square (R2) of each MapReduce application.

Table 4. List of regression models
Name of

application Regression Model RSE R2

 13.41 39.5%

 0.36 99.9%

 3.70 38.9%

W
or

dc
ou

nt

 0.12 17.1%

 16.25 36.1%

 0.36 99.9%

 2.73 56.7%

W
or

dm
ea

n

 0.13 12.7%

 21.37 25.6%

 0.40 99.9%

 2.59 57.8%

W
or

dm
ed

i
an

 0.12 15%

 9.41 47.8%

 0.89 99%

 3.19 90.4%

T
er

as
or

t

 6.39 83.7%

 11.86 55%

 0.40 99.9%

 2.64 64.4% G
re

p

 0.11 7%

 8.53 19.2%

 0.12 100%

 0.05 33.2%

T
er

ag
en

 6.56 53.5%

 7 96.8%

 1.14 92.8%

 0.13 54.2%

Pi

 0.28 13%

Y. Li - Stable Modeling on Resource Usage Parameters of MapReduce Application

 55

In Table 4, the estimated coefficient shows the strength of linear dependency and its sign
represents the dependent direction. Except for the dependency between response and the previous
usage parameter itself, others dependency exposes the resource bottleneck of the corresponding
application in Hadoop MapReduce environment. Meanwhile, according to the estimated coefficient,
the optimized suggestion could be given for improving associated usage parameters. For example,

read rate, denoted by RIO, in the model of Wordcount
application has an estimated coefficient 0.4. It means that the average CPU usage might increase
4% when the average read rate increase 10MB/S, as well as the corresponding previous CPU usage
keeps the fixed value. But in reality, the average of the previous CPU usage increases with
approximately 4%. Thus, the real increase of the means of CPU usage will be 6.4% according to the

equation and the corresponding resource bottleneck is the low read rate.
From the cloud operators side, the effective improvement of CPU usage can be expected when the
throughput of the disk drive is able to be increased. In the application developers’ perspective, the
read rate can be improved by optimizing programming of the corresponding application.

The regression models of applications with similar features showed significantly similar
form and dependent strength, such as Wordcount and Wordmean, while others exhibited differently.
The RSE and R2 are used to describe the fit quality of models. The smaller RSE and the larger R2
are the desirable statistical metrics.

4.5. Validation of autocorrelation of error terms
For the linear regression model, one of the most important assumptions is the error terms,

, are uncorrelated. If the error term is uncorrelated, it proves that there exists strong
randomness in residuals of the model and provides the evidence for the unbiased estimate for the
true standard error. The autocorrelation plot is used to check this assumption. Figure 2 shows the
autocorrelation plot of residuals of regression models of TeraSort application.

In Figure 2, the horizontal axis represents lag time and the vertical axis indicates the
autocorrelation between residual at time t and residual at other lag time. At lag 0, autocorrelation is
always equal to 1 and represents time series itself. Most of the autocorrelation at other lag time fall
into the 95% confidence interval, only few of them violate the dashed line. Such a shape of ACF
plot proves that residuals are uncorrelated and respects to the independent assumption of the linear
regression model residuals.

BRAIN – Broad Research in Artificial Intelligence and Neuroscience, Volume 9, Issue 2 (May, 2018), ISSN 2067-3957

 56

Figure 2. ACF plot of Residuals of Regression Model of Terasort

4.6. Analysis of the minimum sampling time of stable modeling

4.6.1 Analysis of stability of estimate coefficient
Figure 3 shows estimate coefficients distribution of model on read rate as the response of

Terasort application. The filled triangle point-up indicates the position of the minimum stable
sampling time for the corresponding estimate coefficients as well as the number above it shows the
exact position value. The dashed line represents the average estimated coefficient of the regression
model.

Y. Li - Stable Modeling on Resource Usage Parameters of MapReduce Application

 57

Figure 3. Estimate coefficients distribution of model on read rate as response of Terasort application

Note that each estimated coefficient converges to dashed line gradually and shows the

different minimum sampling times as the training data size increases. Different estimated
coefficients perform the various minimum sampling time. For stable modeling, the largest sampling
time of these coefficients is used to be the minimum sampling time of Terasort application. The
minimum sampling time here is 13300 and it belongs to intercept coefficient . It is found that the
bigger difference between estimated coefficients and the average estimated coefficients is exposed
as the training data size approximately less than 6000. The result indicates that the adequate training
data is needed for training the stable model. Therefore, the minimum sampling time is essential for
the model used to reveal the internal relationship between resource usage parameters.

4.6.2. Analysis of stability of Fit Quality of Regression model
Figure 4 shows the statistical metrics distribution of regression model on read rate as the

response of Terasort application. The filled triangle point-up indicates the minimum stable sampling
time for statistical metrics. The top-half of figure 4 shows the residual standard error (RSE)
distribution as training data size increase. The remaining half is for the distribution of R2.

Figure 4. Statistical Metrics distribution of model on RIO as response of Terasort application

BRAIN – Broad Research in Artificial Intelligence and Neuroscience, Volume 9, Issue 2 (May, 2018), ISSN 2067-3957

 58

The minimum sampling time of residual standard error converges to stability slowly than R2
for stable modeling. The sampling time is 6850 and 100, respectively. Comparing to the minimum
sampling time of estimated coefficients, the sampling times of statistical metrics are more less.
Therefore, 13300 is used to be the minimum sampling time to ensure stable modeling.

5. Analysis and Discussion

5.1. The distribution of Estimate Coefficients and Statistical Metrics
Figure 5 presents the strength of estimated coefficients of regression models of each

application using bar plot. The height of a bar represents strength of each estimated coefficient as
well as the pattern shows the corresponding usage parameter of regression model. The top-left panel
of figure 5 displays the estimated coefficients distribution of the model with CPU usage as the
response. The top-right panel, bottom-left panel, bottom-right refer to memory usage, read rate and
write rate as the response, respectively.

Figure 5. Coefficient Distribution of models of all applications

In Figure 5, the positive dependency of different strength between each resource usage

parameter and the corresponding previous usage parameter is exhibited for all MapReduce
applications. It indicates that all current resource usage parameters are positively dependent on the
previous values to some extent degree. Except for these common dependencies, there exist some
special dependencies for different applications.

On the top-left panel of Figure 5, CPU usage of Pi application shows the strongest positive
dependency to lagged CPU usage, the Teragen application had the weakest positive dependency,
and others exhibit the moderate positive dependency. Except for the dependency between CPU
usage and lagged CPU usage, the Wordcount application exhibits moderate positive dependency

Y. Li - Stable Modeling on Resource Usage Parameters of MapReduce Application

 59

between CPU usage and read rate, as well as Wordmean application. Meanwhile, the Teragen
application shows a weak negative relationship between CPU usage and memory usage.

The top-right panel of figure 5 exhibits the dependent characteristics between memory usage
and other usage parameters. Except for Pi application, others showed the extremely highly positive
dependency of memory usage to lagged memory usage. Memory usage of Pi application has a
weakly positive dependency to CPU usage except for a moderate dependency to lagged memory
usage. Memory usage of Grep application exhibits an extremely weak dependency to lagged CPU
usage.

The dependent relationships between read rate and other usage parameters are displayed in
the bottom-left panel of Figure 5. The dependency between read rate and previous read rate
indicates that read rate most likely depends on the lagged read rate for each application. For
Wordcount, Wordmean and Wordmedian applications, read rate is negative dependent to write rate.
In other words, read rate is going to significantly decrease as write rate increases. Read rate of
Terasort application exhibited the moderate negative relationship with write rate and the moderate
positive relationship with lagged write rate. It implies that read rate is sensitive to the variation of
write rate.

The bottom-right panel of figure 5 exhibits the relationship between write rate and other
usage parameters for each application. Terasort and Teragen applications have the highest estimated
coefficients on lagged write rate. It is most likely due to their frequent write operations. The
remaining applications just exhibit the weak relationship between write rate and lagged write rate.
Write rate of Pi application also shows a weak positive relationship with lagged CPU usage. Write
rate of Terasort application exhibits a strong negative relationship with read rate and positive
relationship with lagged read rate. It means that write rate has a relationship with the variation
between read rate and lagged read rate. Therefore, each MapReduce application has the various
relationship among resource usage parameters.

Figure 6 shows the fit quality of regression models. It is following:

Figure 6. RSE and R2 of regression models of MapReduce applications

The left panel and the right panel of figure 6 show the residual standard error (RSE)

distribution and R2 distribution of each application. The good fit quality corresponds to a taller R2
bar and a shorter RSE bar. The R2 almost 1 and small RSE show the best fit quality of the
regression models on memory usage as the response. The overall higher RSE and lower R2 of
regression models on CPU as the response show the worse quality of fitting goodness. The
regression models on read rate as the response also show a moderate fitting quality. For the
regression models on write rate as the response, Terasort application exhibits the best quality and
Teragen application as well. Others show the worse fitting quality. The results show that the
regression models on intensive usage parameters as response exhibit the good fitting quality.

BRAIN – Broad Research in Artificial Intelligence and Neuroscience, Volume 9, Issue 2 (May, 2018), ISSN 2067-3957

 60

5.2. Comparison of Minimum Sampling time for Estimated Coefficients and Statistical
Metrics

Figure 7 was used to show the distribution of the minimum sampling time of estimate

coefficients for stable modeling for each application.

Figure 7. Minimum sampling time of MapReduce applications on various response variable

Figure 7 shows that Terasort application needs the largest sampling time to reach stable state

while Pi application needs the smallest sampling time. The remaining applications need the similar
minimum sampling time. Overall, the stable regression models on memory usage as response show
the least need for sampling time. The results show that various applications have different minimum
sampling time to get stable. The application which performs more read/write operations shows
larger sampling time need.

Figure 8 presents the minimum sampling time distribution of statistic metrics which ensures
the stable modeling. Overall, the minimum sampling time of statistic metrics is smaller than
sampling time of estimated coefficients. For different applications, a time-consuming application
like Terasort needs the largest sampling time to tend to be stable. The Pi application shows the
smallest minimum sampling time to reach stability.

Figure 8. Minimum sample time of statistical metrics of MapReduce applications

Y. Li - Stable Modeling on Resource Usage Parameters of MapReduce Application

 61

The results show that the minimum sampling time of stable modeling in MapReduce
environment is related to the features and the complexity degree of the algorithm of applications.
Applications with similar features and complexity degree of algorithm always have similar
minimum sampling time. The application of higher complexity degree and consumption of
resources will need more sampling time to be stable. Therefore, the fixed sampling time is not
always reliable.

6. Conclusion and Future Works
In this paper, we explored and dig the dependent characteristics of resource usage

parameters, including CPU usage, memory usage, read rate and write rate. Based on the dig
characteristics, we model the relationship of usage parameters using multiple linear regression
methods for seven MapReduce applications. The results show that the regression model built by
using such analytical approach is beneficial to cloud operators to discover the bottleneck resource of
the cloud computing platform and to give reasonably optimized suggestion for MapReduce
applications. Furthermore, in order to make sure of obtaining the stable relationship, we also
investigated the minimum sampling time for each application. We exhibited the influence of
sampling time for stable modeling and presented an effective approach to make the corresponding
minimum sampling time. This approach effectively provided pieces of evidence against the
empirical fixed sampling time for modeling MapReduce applications. In future, we will study the
influence coming from the block size and scale of workload and explore the best configuration of
related parameters for stable modeling.

References

Apache.org. (2017). Apache hadoop. Retrieved 10 December 2017, from http://hadoop.apache.org/
Bakratsas, M., Basaras, P., Katsaros, D., & Tassiulas, L. (2017). Hadoop MapReduce Performance

on SSDs for Analyzing Social Networks. Big Data Research.
Bautista Villalpando, L., April, A., & Abran, A. (2014). Performance analysis model for big data

applications in cloud computing. Journal of Cloud Computing: Advances, Systems and
Applications, 3(1), 19–38.

Bhattacharya, P. K., & Burman, P. (2016). 13 - Time Series. In P. K. Bhattacharya & P. Burman
(Eds.), Theory and Methods of Statistics (pp. 431–489). Academic Press.

Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (1994). Time Series Analysis: Forecasting &
Control. Book.

Everitt, B. S., & Skrondal, A. (2010). The Cambridge Dictionary of Statistics. Journal of Chemical
Information and Modeling (Vol. 53).

Gareth James, Daniela Witten, T. H. and R. T. (2013). An Introduction to Statistical Learning.
Springer New York Heidelberg， page 72.

Geneva. (2012). ISO/IEC (2012) ISO/IEC JTC 1 SC38:Cloud Computing Overview and
Vocabulary. In International Organization for Standardization. Switzerland.

Glushkova, D., Jovanovic, P., & Abelló, A. (2017). Mapreduce performance model for Hadoop 2.x.
Information Systems.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning. Bayesian
Forecasting and Dynamic Models (Vol. 1).

Issa, J. A. (2015). Performance Evaluation and Estimation Model Using Regression Method for
Hadoop WordCount. IEEE Access, 3, 2784–2793.

Levy, G. (2016). Chapter 3 - Generation of Random Variates. In G. Levy (Ed.), Computational
Finance Using C and C# (pp. 35–56). Academic Press.

Linton, O. (2017). Chapter 17 - The Least Squares Procedure. In O. Linton (Ed.), Probability,
Statistics and Econometrics (pp. 251–261). Academic Press.

Molugaram, K., & Rao, G. S. (2017a). Chapter 10 - Test of Significance—Small Samples. In K.
Molugaram & G. S. Rao (Eds.), Statistical Techniques for Transportation Engineering (pp.
415–450). Butterworth-Heinemann.

BRAIN – Broad Research in Artificial Intelligence and Neuroscience, Volume 9, Issue 2 (May, 2018), ISSN 2067-3957

 62

Molugaram, K., & Rao, G. S. (2017b). Chapter 6 - Correlation and Regression. In K. Molugaram &
G. S. Rao (Eds.), Statistical Techniques for Transportation Engineering (pp. 293–329).
Butterworth-Heinemann.

Nghiem, P. P., & Figueira, S. M. (2016). Towards efficient resource provisioning in MapReduce.
Journal of Parallel and Distributed Computing, 95(Supplement C), 29–41.

O’Brien, R. M. (2007). A caution regarding rules of thumb for variance inflation factors. Quality
and Quantity, 41(5), 673–690.

Rizvandi, N. B., Nabavi, A., & Hessabi, S. (2005). An accurate FIR approximation of ideal
fractional delay filter with complex coefficients in Hilbert space. Journal of Circuits,
Systems and Computers, 14(3).

Rodgers, D. P. (n.d.). ‘Improvements in multiprocessor system design’. New York: ACM
SIGARCH Computer Architecture News. http://doi.org/doi:10.1145/327070.327215.

Ross, S. M. (2017a). Chapter 12 - Linear Regression. In S. M. Ross (Ed.), Introductory Statistics
(Fourth edition) (Fourth edition, pp. 519–584). Oxford: Academic Press.

Ross, S. M. (2017b). Chapter 3 - Using Statistics to Summarize Data Sets. In S. M. Ross (Ed.),
Introductory Statistics (Fourth edition) (Fourth edition, pp. 65–138). Oxford: Academic
Press.

Shams, M. Bin, Haji, S., Salman, A., Abdali, H., & Alsaffar, A. (2016). Time series analysis of
Bahrain’s first hybrid renewable energy system. Energy, 103, 1–15.

Shi, Y., Zhang, K., Cui, L., Liu, L., Zheng, Y., Zhang, S., & Yu, H. (2016). MapReduce short jobs
optimization based on resource reuse. Microprocessors and Microsystems, 47(Part A), 178–
187.

Theodoridis, S. (2015). Chapter 4 - Mean-Square Error Linear Estimation. In S. Theodoridis (Ed.),
Machine Learning (pp. 105–160). Oxford: Academic Press.

Usset, J., Staicu, A.-M., & Maity, A. (2016). Interaction models for functional regression.
Computational Statistics & Data Analysis, 94, 317–329.

Vavilapalli, V. K., Murthy, A. C., Douglas, C., Agarwal, S., Konar, M., Evans, R., …
Baldeschwieler, E. (2013). Apache Hadoop YARN: Yet Another Resource Negotiator. In
Proceedings of the 4th Annual Symposium on Cloud Computing (p. 5:1--5:16). New York,
NY, USA: ACM.

Warner, R. A. (2016). Chapter 2 - Using Z Scores for the Display and Analysis of Data. In R. A.
Warner (Ed.), Optimizing the Display and Interpretation of Data (pp. 7–51). Boston:
Elsevier.

Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2017). Chapter 5 - Credibility: Evaluating what’s
been learned. In I. H. Witten, E. Frank, M. A. Hall, & C. J. Pal (Eds.), Data Mining (Fourth
Edition) (Fourth Edition, pp. 161–203). Morgan Kaufmann.

Yu, H., Jiang, S., & Land, K. C. (2015). Multicollinearity in hierarchical linear models. Social
Science Research, 53, 118–136.

Yangyuan LI (September 23, 1980) received his BSc in Computer science (2002)
from Tai Yuan University of Technology, MSc in Network information control
(2010) from Chang’an University. Now he is PhD in Department of Network
system and services, Faculty of Sciences, Budapest University of Technology and
Economics, Hungary. His current research interests include different aspects of
Artificial Intelligence applied in big data analysis, such as statistical learning,
Neural network, cloud computing.

