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Abstract 
This paper presents a comparative analysis of the performance of three estimation 

algorithms: Expectation Maximization (EM), Greedy EM Algorithm (GEM) and Figueiredo-Jain 
Algorithm (FJ) - based on the Gaussian mixture models (GMMs) for signature biometrics 
verification. The simulation results have shown significant performance achievements. The test 
performance of EER=5.49 % for "EM", EER=5.04 % for "GEM", and EER=5.00 % for "FJ", shows 
that the behavioral information scheme of signature biometrics is robust and has a discriminating 
power, which can be explored for identity authentication. 
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Mixture Modal, EM, GEM and FJ. 

 
1. Introduction 
BIOMETRIC is a Greek composite word stemming from the synthesis of bio and metric, 

meaning life measurement. In this context, the science of biometrics is concerned with the accurate 
measurement of unique biological characteristics of an individual in order to securely identify them 
to a computer or other electronic system. Biological characteristics measured usually include 
fingerprints, voice patterns, retinal and iris scans, face patterns, and even the chemical composition 
of an individual's DNA [1]. Biometrics authentication (BA) (Am I whom I claim I am?) involves 
confirming or denying a person's claimed identity based on his/her physiological or behavioral 
characteristics [2]. BA is becoming an important alternative to traditional authentication methods 
such as keys (“something one has", i.e., by possession) or PIN numbers (“something one knows", 
i.e., by knowledge) because it is essentially “who one is", i.e., by biometric information. Therefore, 
it is not susceptible to misplacement or forgetfulness [3]. These biometric systems for personal 
authentication and identification are based upon physiological or behavioral features which are 
typically distinctive, although time varying, such as fingerprints, hand geometry, face, voice, lip 
movement, gait, and iris patterns. An identity verification system has to deal with two kinds of 
events: either the person claiming a given identity is the one who he claims to be (in which case, he 
is called a client), or he is not (in which case, he is called an impostor). Moreover, the system may 
generally take two decisions: either accept the client or reject him and decide he is an impostor.  

 
Some works based on biometric signature identity verification systems has been reported in 

literature. A. Perez-Hernandez et al. [13] Propose a simple adaptive off-line signature recognition 
method based on the feature analysis of extracted significant strokes for a given signature. Their 
system correctly decides on the majority of tested patterns, which include both simple and skilled 
forgeries. Experimental results have showed a good trade-off between response time and reasonable 
recognition accuracy. Hugo Gamboa et al. [14] describe a new behavioral biometric technique 
based on human computer interaction. They developed a system that captures the user interaction 
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via a pointing device, and uses this behavioral information to verify the identity of an individual. 
Using statistical pattern recognition techniques, they developed a sequential classifier that processes 
user interaction, according to which the user identity is considered genuine if a predefined accuracy 
level is achieved, and the user is classified as an impostor otherwise. Two statistical models for the 
features were tested, namely Parzen density estimation and a uni-modal distribution. The system 
was tested with different numbers of users in order to evaluate the scalability of the proposal. 
Experimental results showed that the normal user interaction with the computer via a pointing 
device entails behavioral information with discriminating power that can be explored for identity 
authentication. Ibrahim S. I. Abuhaiba [4] presents a simple and effective signature verification 
method that depends only on the raw binary pixel intensities and avoids using complex sets of 
features. The method looks at the signature verification problem as a graph matching problem. The 
method is tested using genuine and forgery signatures produced by five subjects. An equal error rate 
of 26.7% and 5.6% was achieved for skilled and random forgeries, respectively. A positive property 
of the algorithm is that the false acceptance rate of random forgeries vanishes at the point of equal 
false rejection and skilled forgery false acceptance rates.  
 

2. Biometric Signature Verification  
Handwritten signature is one of the first accepted civilian and forensic biometric 

identification technique in our society [4]. Human verification is normally very accurate in 
identifying genuine signatures. A signature verification system must be able to detect forgeries and 
at the same time reduce rejection of genuine signatures. The signature verification problem can be 
classified into categories: offline and online. Offline signature verification does not use dynamic 
information that is used extensively in online signature verification systems. This paper investigates 
the problem of offline signature verification. The problem of offline signature verification has been 
faced by taking into account three different types of forgeries: random forgeries, produced without 
knowing either the name of the signer or the shape of his signature; simple forgeries, produced 
knowing the name of the signer but without having an example of his signature; and skilled 
forgeries, produced by people who, looking at an original instance of the signature, attempt to 
imitate it as closely as possible.  

 
Figure 1. Wacom Graphire3 digitizing TabletPC 

 
A. Feature Extraction 
The coordinate trajectories  (xn yn) and pressure signal  are the components of the 

unprocessed feature vectors [ ]T
nnnn pyxu ,,= extracted from the signature signal [5], where n 

=1,...,Ns  and  Ns is the duration of the signature in time samples. Signature trajectories are then pre-
processed by subtracting the centre of mass followed by rotation alignment based on the average 
path tangent angle. An extended set of discrete-time functions are derived from the pre-processed 
trajectories consisting of sample estimations of various dynamic properties. As s result, the 
parameterised signature O consists in the sequence of feature vectors [ ]nnnnnnnn yxvpyxo && ,,,,, θ= , n 
=1,...,Ns, where the upper dot notation represents an approximation to the first order time derivative 
and  θ and v stand respectively for path tangent angle, path velocity magnitude. 
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22
iii yxv && +=  and ),arctan( iii xy &&=θ  and 1−−= iii xxx&  and 1−−= iii yyy&  

 
    A whitening linear transformation is finally applied to each discrete-time function so as to 
obtain zero mean and unit standard deviation function values. Seven dimensional feature vectors are 
used for GMM processing described in the following section. Figure 3 shows x-, y-, p- and velocity 
signals of an example signature. 

  

 
 

Figure 2. Azimuth and inclination angles of the pen respect to the plane of the graphic card  
GD-0405U from Wacom Graphire3 digitizing TabletPC 

 
 

 
Figure 3. Signals (x-, y- position, pen pressure and velocity) of one signature fragment. 
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B. Maximum Likelihood Parameter Estimation  
Given a set of observation data in a matrix X and a set of observation parameters θ the ML 

parameter estimation aims at maximizing the likelihood )(θL  or log likelihood of the observation 
data  { }nXXX ,...,1=  

 
 ).(maxargˆ θθ

θ
L=  (1) 

 
Assuming that it has independent, identically distributed data, it can write the above 

equations as:  
 

.)|()|,...,()|()(
11 ∏ =

=== n

i in XpXXpXpL θθθθ   (2) 
 
The maximum for this function can be found by taking the derivative and set it equal to 

zero, assuming an analytical function.  
 

.0)( =
∂
∂ θ
θ

L   (3) 

 
The incomplete-data log-likelihood of the data for the mixture model is given by:  
 

∑ =
== N

i ixXL
1

)|log()|log()( θθθ (4) 
 
which is difficult to optimize because it contains the log of the sum. If it considers X as incomplete, 
however, and posits the existence of unobserved data items { }N

iiyY 1==  whose values inform us 
which component density generated each data item, the likelihood expression is significantly 
simplified. That is, it assumes that yi ∈ {1, …, K} for each i, and yi=k if the i-th sample was 
generated by the k-th mixture component. If it knows the values of Y, it obtains the complete-data 
log-likelihood, given by:  

)|,(log)|( θθ YXpYL =  (5) 
 

∑ =
= N

i ii yxp
1

)|,(log θ  (6) 
 

∑ =
= N

i iii yxpxp
1

)),|()|(log( θθ  (7) 
 

∑ ∑=
+= N

i iyiy yxgp
ii1

)),|(log(log μ  (8) 
 
which, given a particular form of the component densities, can be optimized using a variety of 
techniques [6].  
 

C. EM algorithm  
The expectation-maximization (EM) algorithm [7][8] [9][10] is a procedure for maximum-

likelihood (ML) estimation in the cases where a closed form expression for the optimal parameters 
is hard to obtain. This iterative algorithm guarantees the monotonic increase in the likelihood L 
when the algorithm is run on the same training database.  
The probability density of the Gaussian mixture of k components in Rd  can be described as 
follows: 
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∑ =
= N

i ix
1 i )|Ø(x)( θπφ   ∈∀x Rd,  (9) 

 
 

where ∅(x|θi) is a Gaussian probability density  with the parameters ( )iii m Σ= ,θ , mi  is the mean 
vector and iΣ is the covariance matrix which is assumed positive definite given by: 
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and  [ ] ),...,2,1(1,0 kii =∈π  are the mixing proportions under the constraint 1

1
=∑ =

k

i iπ . If it 

encapsulates all the parameters into one vector: ( )kkk θθθπππθ ,...,,,,...,, 2121= , then , according to 
(8), the density of Gaussian mixture can be rewritten as: 
 

∑ ∑ ∑= =
==Θ k

i

k

i iiikx
1 1 ii ),m|Ø(x)|Ø(x)|( πθπφ .  (11) 

 
For the Gaussian mixture modeling, there are many learning algorithms. But the EM algorithm may 
be the most well-known one. By alternatively implementing the E-step to estimate the probability 
distribution of the unobservable random variable and the M-step to increase the log-likelihood 
function, the EM algorithm can finally lead to a local maximum of the log-likelihood function of 
the model. For the Gaussian mixture model, given a sample data set S={x1, x2, …, xN} as a special 
incomplete data set, the log-likelihood function can be expressed as follows: 
 

∏ ∑ ∑= = =
=Θ=Θ N

t

N

t

k

i iikkSp
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which can be optimized iteratively via the EM algorithm as follows: 
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Although the EM algorithm can have some good convergence properties in certain 

situations, it certainly has no ability to determine the proper number of the components for a sample 
data set because it is based on the maximization of the likelihood. 
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D. Greedy EM Algorithm 
The greedy algorithm (GEM) [7][8][10][11] starts with a single component and then adds 

components into the mixture one by one. The optimal starting component for a Gaussian mixture is 
trivially computed, optimal meaning the highest training data likelihood. The algorithm repeats two 
steps: insert a component into the mixture, and run EM until convergence. Inserting a component 
that increases the likelihood the most is thought to be an easier problem than initializing a whole 
near-optimal distribution. Component insertion involves searching for the parameters for only one 
component at a time. Recall that EM finds a local optimum for the distribution parameters, not 
necessarily the global optimum which makes it initialization dependent method. Given cp  a C-
component Gaussian mixture with parameters cθ . The general greedy algorithm for Gaussian 
mixture is as follows:  

 
1. Compute the optimal (in the ML sense) one-component mixture p1 and set 1←C . 
2. Find a new component ),;( '' ΣμxΝ  and corresponding mixing weight  that increase 

the likelihood the most: 
       ∑ =Σ Σ+−=Σ N

i iiC xxp
1},,{

''' )],;()()1ln[(maxarg},,{ μαααμ αμ N   (17) 

                  while keeping pC  fixed. 
3. Set ),;(')()'1()( ''

1 Σ+−←+ μαα xxpxp cC N   and then 1+← CC . 
4. Update pC using EM (or more other method) until convergence. 
5.   Evaluate some stopping criterion; go to step 2 or quit. 
 
The stopping criterion in Step 5 can be for example any kind of model selection criterion, 

wanted number of components, or the minimum message length criterion. The crucial point is of 
course Step 2. Finding the optimal new component requires a global search, which is performed by 
creating CNcand candidate components. The number of candidates will increase linearly with the 
number of components C, having Ncand candidates per each existing component. The candidate 
resulting in the highest likelihood when inserted into the (previous) mixture is selected. The 
parameters and weight of the best candidate are then used in Step 3 instead of the truly optimal 
values. 
 

The candidates for executing Step 2 are initialized as follows: the training data set X is 
partitioned into C disjoints data sets {Ac}, c=1…C according to the posterior probabilities of 
individual components; the data set is Bayesian classified by the mixture components. From each 
Ac number of Ncand candidates are initialized by picking uniformly randomly two data points xl and 
xr in Ac. The set Ac is then partitioned into two using the smallest distance selection with respect to 
xl and xr. The mean and covariance of these two new subsets are the parameters for two new 
candidates. The candidate weights are set to half of the weight of the component that produced the 
set Ac. Then new xl and xr are drawn until Ncand candidates are initialized with Ac. The partial EM 
algorithm is then used on each of the candidates. The partial EM differs from the EM and CEM 
algorithms by optimizing (updating) only one component of a mixture; it does not change any other 
components. In order to reduce the time complexity of the algorithm a lower bound on the log-
likelihood is used instead of the true log-likelihood. The lower-bound log-likelihood is calculated 
with only the points in the respective set Ac. The partial EM update equations are as follows: 
 

),,()()1(
),,(

1, Σ+−
Σ=+ μαα

μα
iC

i
Ci xxp

xw
N

N , (18) 
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where  N(Ac) is the number of training samples in the set Ac. These equations are much like the 
basic EM update equations in Eqs. (6) - (8). The partial EM iterations are stopped when the relative 
change in log-likelihood of the resulting C + 1 –component mixture drops below threshold or 
maximum number of iterations is reached. When the partial EM has converged the candidate is 
ready to be evaluated. 
 

E. Figueiredo-Jain Algorithm  
The Figueiredo-Jain (FJ) [7][8][10][11] algorithm tries to overcome three major weaknesses 

of the basic EM algorithm. The EM algorithm presented previous section requires the user to set the 
number of components and the number will be fixed during the estimation process. The FJ 
algorithm adjusts the number of components during estimation by annihilating components that are 
not supported by the data. This leads to the other EM failure point, the boundary of the parameter 
space. FJ avoids the boundary when it annihilates components that are becoming singular. FJ also 
allows starting with an arbitrarily large number of components, which tackles the initialization issue 
with the EM algorithm. The initial guesses for component means can be distributed into the whole 
space occupied by training samples, even setting one component for every single training sample. 

  
The classical way to select the number of mixture components is to adopt the "model-

class/model" hierarchy, where some candidate models (mixture pdf's) are computed for each model-
class (number of components), and then select the "best" model. The idea behind the FJ algorithm is 
to abandon such hierarchy and to find the "best" overall model directly. Using the minimum 
message length criterion and applying it to mixture models leads to the objective function: 

),(ln
2
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12

ln
212

ln
2

),(
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XVCNCNVX nznz
c

c
c

L−+++⎟
⎠
⎞

⎜
⎝
⎛=Λ ∑ >

 (22) 

 
Where N is the number of training points, V is the number of free parameters specifying a 

component, and Cnz is the number of components with nonzero weight in the mixture ( 0>cα ). The 
last term ),(ln θXL is the log-likelihood of the training data given the distribution parameters (Eq. 
8). The EM algorithm can be used to minimize Eq. 22 with a fixed Cnz it leads to the M-step with 
component weight updating formula: 
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This formula contains an explicit rule of annihilating components by setting their weights to 

zero. The above M-steps are not suitable for the basic EM algorithm though. When initial C is high, 
it can happen that all weights become zero because none of the components have enough support 
from the data. Therefore a component-wise EM algorithm (CEM) is adopted. CEM updates the 
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components one by one, computing the E-step (updating W) after each component update, where 
the basic EM updates all components "simultaneously". When a component is annihilated its 
probability mass is immediately redistributed strengthening the remaining components. When CEM 
converges, it is not guaranteed that the minimum of 0),( >Λ Xθ  is found, because the annihilation 
rule (Eq. 23) does not take into account the decrease caused by decreasing Cnz. After convergence 
the component with the smallest weight is removed and the CEM is run again, repeating until 
Cnz=1. Then the estimate with the smallest ),( XθΛ is chosen. The implementation of the FJ 
algorithm uses a modified cost function instead of  ),( XθΛ . 
 

),(lnln
2

)1(ln
2

),(
0:

' θαθ
α

XNVCVX nz
c c

c
L−++=Λ ∑ >

. (24) 

  
3. Experiments and Results 
The experiments were performed using signatures database obtained from eNTERFACE 

2005 [12]. Thirty subjects were used for the experiments in which twenty-six are males and four are 
females. For each subject, 30 signatures (with dat header) are used. Each line of a (.dat files) 
consists of four comma separated integer values for the sampled x- and y- position of the pen tip, 
the pen pressure and the timestamp (in ms); the lines with values of -1 for x, y and pressure 
represent a pen-up/pen-down event; The device used for recording the handwriting data was a 
Wacom Graphire3 digitizing tablet. Size of sensing surface is 127.6mm x 92.8mm. With spatial 
resolution of 2032 lpi (lines per inch), able to measure 512 degrees of pressure. The signature data 
is acquired with a non-fixed sampling rate of about 100Hz. For the experts, twenty-four signatures 
from a subject were randomly selected for training, and the other six samples were used for the 
subsequent validation and testing. Three sessions of the signature database were used separately. 
Session one was used for training the signature experts. Each expert used ten mixture client models. 
To find the performance, Sessions two and three were used for obtaining expert opinions of known 
impostor and true claims. 

 
Performance Criteria: 
The basic error measure of a verification system is false rejection rate (FRR) and false 

acceptance rate (FAR) as defined in the following equations:  
False Rejection Rate (FRRi): is an average of number of falsely rejected transactions. If n 

is a transaction and x(n) is the verification result where 1 is falsely rejected and 0 is accepted and N 
is the total number of transactions then the personal False Rejection Rate for user i is  

∑
=

=
N

n
i nx

N
FRR

1
)(1  (25) 

False Acceptance rate (FARi) is an average of number of falsely accepted transactions. If n 
is a transaction and x(n) is the verification result where 1 is a falsely accepted transaction and 0 is 
genuinely accepted transaction and N is the total number of transactions then the personal False 
Acceptance Rate for user i is 

∑
=

=
N

n
i nx

N
FAR

1
)(1  (26) 

Both FRRi and FARi are usually calculated as averages over an entire population in a test. If 
P is the size of populations then these averages are  

∑=
P

i
iFRR

P
FRR 1  (27) 

∑=
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i
iFAR

P
FAR 1  (28) 
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Equal Error Rate (EER), is an intersection where FAR and FRR are equal at an optimal 
threshold value. This threshold value shows where the system performs at its best (see Figure 4). 

 
 

 
 

             
 
 

             
 

Figure 4. Detection error tradeoff curves 
 
As a common starting point, classifier parameters were selected to obtain performance as 

close as possible to EER on clean test data (following the standard practice in the biometric 
verification area of using EER as a measure of expected performance). A good decision is to choose 
the decision threshold such as the false accept equal to the false reject rate. In this paper it uses the 
Detection Error Tradeoff (DET) curve to visualize and compare the performance of the system. 
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4. Conclusion 
The paper has presented a human authentication method of behavioral biometrics signature 

information. Simulation results show that state-of-the art finite mixture modal (GMM) is quite 
effective in modeling the genuine and impostor score densities. The (EM), (GEM) and (FJ) 
estimation algorithms achieve a significant performance rates, EER=5.49 % for "EM", EER=5.04 % 
for "GEM" and EER=5.00 % for "FJ". Hence, the behavioral information scheme based on 
signature biometrics is robust and has a discriminating power, which can be explored for identity 
authentication.    
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